# Isotropy of Algebraic Theories

@article{Hofstra2018IsotropyOA, title={Isotropy of Algebraic Theories}, author={Pieter J. W. Hofstra and Jason Parker and P. Scott}, journal={Electr. Notes Theor. Comput. Sci.}, year={2018}, volume={341}, pages={201-217} }

Abstract To every small category or topos one may associate its isotropy group, which is an algebraic invariant capturing information about the behaviour of automorphisms. We investigate this invariant in the particular situation of algebraic theories, thus obtaining a group-theoretic invariant of algebraic theories. This invariant encodes a notion of inner automorphism relative to the theory. Our main technical result is a syntactic characterization of the isotropy group of an algebraic theory… Expand

#### Topics from this paper

#### 8 Citations

Polymorphic Automorphisms and the Picard Group

- Computer Science, Mathematics
- FSCD
- 2021

This work applies a syntactical characterization of the group of such automorphisms associated with an algebraic theory to the wider class of quasi-equational theories and proves that the isotropy group of a strict monoidal category is precisely its Picard group of invertible objects. Expand

Covariant Isotropy of Grothendieck Toposes

- Mathematics
- 2021

We provide an explicit characterization of the covariant isotropy group of any Grothendieck topos, i.e. the group of (extended) inner automorphisms of any sheaf over a small site. As a consequence,… Expand

Inner automorphisms of presheaves of groups

- Mathematics
- 2021

It has been proven by Schupp and Bergman that the inner automorphisms of groups can be characterized purely categorically as those group automorphisms that can be coherently extended along any… Expand

Quotient Categories and Phases

- Mathematics, Physics
- 2018

We study properties of a category after quotienting out a suitable chosen group of isomorphisms on each object. Coproducts in the original category are described in its quotient by our new weaker… Expand

Isotropy and Combination Problems

- Mathematics, Computer Science
- ArXiv
- 2020

It is shown that if any free, finitely generated model of the disjoint union theory $\mathbb{T}_1 + \mathbb*_2$ has trivial isotropy group, and hence the only inner automorphisms of such models, i.e. the only autom Morphisms ofsuch models that are coherently extendible, are the identity automorphism. Expand

Inner automorphisms of groupoids

- Mathematics
- 2019

Bergman has given the following abstract characterisation of the inner automorphisms of a group $G$: they are exactly those automorphisms of $G$ which can be extended functorially along any… Expand

A Variety Theorem for Relational Universal Algebra

- Computer Science, Mathematics
- ArXiv
- 2021

An analogue of universal algebra in which generating symbols are interpreted as relations is developed, and a variety theorem is proved for these relational algebraic theories, in which their categories of models are precisely the ’definable categories’. Expand

Isotropy groups of free racks and quandles

- Mathematics
- 2020

In this article, we characterize the (covariant) isotropy groups of free, finitely generated racks and quandles. As a consequence, we show that the usual inner automorphisms of such racks and… Expand

#### References

SHOWING 1-10 OF 17 REFERENCES

ISOTROPY AND CROSSED TOPOSES

- Mathematics
- 2012

In memory of Hugh Millington Abstract. Motivated by constructions in the theory of inverse semigroups and etale groupoids, we dene and investigate the concept of isotropy from a topos-theoretic per-… Expand

An inner automorphism is only an inner automorphism, but an inner endomorphism can be something strange

- Mathematics
- 2012

The inner automorphisms of a group G can be characterized within the category of groups without reference to group elements: they are precisely those au- tomorphisms of G that can be extended, in a… Expand

Scheme representation for first-order logic

- Computer Science, Mathematics
- TACL
- 2013

This dissertation aims to shrink the gap by presenting a theory of logical schemes, geometric entities which relate to first-order logical theories in much the same way that algebraic schemes relate to commutative rings. Expand

Core algebra revisited

- Computer Science, Mathematics
- Theor. Comput. Sci.
- 2007

Reynolds's work in parametric polymorphism when specialized to a particular example gives rise to the notion of the core of a category and its associated equational theory of core algebras.

Some aspects of the SD-world

- Mathematics
- 2017

We survey a few of the many results now known about the self-distributivity law and selfdistributive structures, with a special emphasis on the associated word problems and the algorithms solving… Expand

Phd by thesis

- Sociology
- Nature
- 1988

Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most… Expand

Higher Isotropy

- Accepted for publication in Theory and Applications of Categories,
- 2018

Toposes

- Oxford University Press,
- 2017

Theory and Applications of Categories 26

- pp. 660–709,
- 2012