Isoperimetric inequalities in simplicial complexes
@article{Parzanchevski2016IsoperimetricII, title={Isoperimetric inequalities in simplicial complexes}, author={Ori Parzanchevski and Ron Rosenthal and Ran J. Tessler}, journal={Combinatorica}, year={2016}, volume={36}, pages={195-227} }
In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a…
60 Citations
Algebraic and combinatorial expansion in random simplicial complexes
- MathematicsRandom Struct. Algorithms
- 2022
In this paper we consider the expansion properties and the spectrum of the combinatorial Laplace operator of a d‐dimensional Linial–Meshulam random simplicial complex, above the cohomological…
The theta number of simplicial complexes
- Mathematics, Computer ScienceIsrael Journal of Mathematics
- 2019
A generalization of the celebrated Lovász theta number of a graph to simplicial complexes of arbitrary dimension takes advantage of real simplicial cohomology theory, in particular combinatorial Laplacians, and provides a semidefinite programming upper bound of the independence number ofA simplicial complex.
Higher Dimensional Cheeger Inequalities
- MathematicsSoCG
- 2014
Two proofs of the inequality of the Cheeger inequality for arbitrary complexes are given: one for k-dimensional simplicial complexes with complete (k − 1)-skeleton, and one for arbitrarycomplexes of higher dimension.
Simplicial complexes: Spectrum, homology and random walks
- MathematicsRandom Struct. Algorithms
- 2017
A stochastic process on simplicial complexes of arbitrary dimension is defined, which reflects in an analogue way the existence of higher dimensional homology, and the magnitude of the high-dimensional spectral gap originating in the works of Eckmann and Garland.
Higher dimensional discrete Cheeger inequalities
- MathematicsJ. Comput. Geom.
- 2015
Two proofs of the inequality of the Cheeger inequality for arbitrary complexes are given and it is shown that indeed $\lambda(X) \leq h (X)$ is the smallest non-trivial eigenvalue of the (k-1) -dimensional upper) Laplacian, for the case of $k$ -dimensional simplicial complexes $X$ with complete $(k- 1)$ -skeleton.
Mixing in High-Dimensional Expanders
- MathematicsCombinatorics, Probability and Computing
- 2017
This paper removes the assumption of a complete skeleton, showing that simultaneous concentration of the Laplace spectra in all dimensions implies pseudo-randomness in any complex.
On eigenvalues of random complexes
- MathematicsArXiv
- 2014
This most straightforward version of a higher-dimensional discrete Cheeger inequality fails, in quite a strong way: for every k ≥ 2 and n ∈ N, there is a k-dimensional complex Ynk on n vertices that has strong spectral expansion properties (all nontrivial eigenvalues of the normalised k- dimensional Laplacian lie in the interval).
Random simplicial complexes
- Mathematics
- 2016
Random shapes arise naturally in many contexts. The topological and geometric structure of such objects is interesting for its own sake, and also for applications. In physics, for example, such…
22 RANDOM SIMPLICIAL COMPLEXES
- Mathematics
- 2017
Random shapes arise naturally in many contexts. The topological and geometric structure of such objects is interesting for its own sake, and also for applications. In physics, for example, such…
References
SHOWING 1-10 OF 82 REFERENCES
On laplacians of random complexes
- MathematicsSoCG '12
- 2012
It is shown that the most straightforward version of a higher-dimensional Cheeger inequality fails: for every k>1, there is an infinite family of k-dimensional complexes that are spectrally expanding (there is a large eigenvalue gap for the Laplacian) but not combinatorially expanding.
Higher Dimensional Cheeger Inequalities
- MathematicsSoCG
- 2014
Two proofs of the inequality of the Cheeger inequality for arbitrary complexes are given: one for k-dimensional simplicial complexes with complete (k − 1)-skeleton, and one for arbitrarycomplexes of higher dimension.
Simplicial complexes: Spectrum, homology and random walks
- MathematicsRandom Struct. Algorithms
- 2017
A stochastic process on simplicial complexes of arbitrary dimension is defined, which reflects in an analogue way the existence of higher dimensional homology, and the magnitude of the high-dimensional spectral gap originating in the works of Eckmann and Garland.
Higher dimensional discrete Cheeger inequalities
- MathematicsJ. Comput. Geom.
- 2015
Two proofs of the inequality of the Cheeger inequality for arbitrary complexes are given and it is shown that indeed $\lambda(X) \leq h (X)$ is the smallest non-trivial eigenvalue of the (k-1) -dimensional upper) Laplacian, for the case of $k$ -dimensional simplicial complexes $X$ with complete $(k- 1)$ -skeleton.
Combinatorial Laplacians of matroid complexes
- Mathematics
- 1999
For any finite simplicial complex K, one can define Laplace operators ∆i which are combinatorial analogues of the Laplace operators on differential forms for a Riemannian manifold. The definition (as…
il , , lsoperimetric Inequalities for Graphs , and Superconcentrators
- Mathematics
- 1985
A general method for obtaining asymptotic isoperimetric inequalities for families of graphs is developed. Some of these inequalities have been applied to functional analysis, This method uses the…
Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry
- Mathematics
- 2010
We find lower bounds on the topology of the fibers $${F^{-1}(y)\subset X}$$ of continuous maps F : X → Y in terms of combinatorial invariants of certain polyhedra and/or of the cohomology algebras…
Overlap properties of geometric expanders
- MathematicsSODA '11
- 2011
It is shown that, for every d, the best value of the constant c = c(d) that can be achieved by such a construction is asymptotically equal to the limit of the overlap numbers of the complete (d + 1)-uniform hypergraphs with n vertices, as n → ∞.
Computing Betti Numbers via Combinatorial Laplacians
- Computer Science, MathematicsAlgorithmica
- 1998
The Laplacian and power method is used to compute Betti numbers of simplicial complexes, which has a number of advantages over other methods, both in theory and in practice, but its running time depends on a ratio, ν, of eigenvalues which the authors have yet to understand fully.