Isometry Groups and Geodesic Foliations of Lorentz Manifolds . Part I : Foundations of Lorentz Dynamics

  title={Isometry Groups and Geodesic Foliations of Lorentz Manifolds . Part I : Foundations of Lorentz Dynamics},
  author={Assia Zeghib},
This is the first part of a series on non-compact groups acting isometrically on compact Lorentz manifolds. This subject was recently investigated by many authors. In the present part we investigate the dynamics of affine, and especially Lorentz transformations. In particular we show how this is related to geodesic foliations. The existence of geodesic foliations was (very succinctly) mentioned for the first time by D’Ambra and Gromov, who suggested that this may help in the classification of… CONTINUE READING

From This Paper

Topics from this paper.
10 Citations
18 References
Similar Papers


Publications referenced by this paper.
Showing 1-10 of 18 references

The isometry group of a compact Lorentz manifold

  • S. Adams, G. Stuck
  • II, Invent. Math. 129
  • 1997
Highly Influential
8 Excerpts

Noncompact simple automorphism groups of Lorentz manifolds

  • N. Kowalsky
  • Ann. Math. 144
  • 1997
2 Excerpts

Sur les actions affines des groupes discrets

  • A. Zeghib
  • Ann. Inst. Fourier
  • 1997
1 Excerpt

Sur le bord du groupe d’isométries d’une variété lorentzienne compacte

  • A. Zeghib
  • C. R. Acad. Sci. 322
  • 1996
1 Excerpt

Sur les espaces-temps homogènes

  • A. Zeghib
  • preprint
  • 1995
3 Excerpts

Lectures on transformation groups : geometry and dynamics, Surveys in Differential Geometry (Supplement to the Journal of Differential Geometry)

  • G. D’Ambra, M. Gromov
  • 1991
2 Excerpts

Homeomorphic conjugates of Fuschian groups

  • P. Tukia
  • J. Reine. Angew. Math. 391
  • 1988
1 Excerpt

Non-arithmetic groups in Lobatchevsky spaces

  • M. Gromov, I. Piatetski-Shapiro
  • Publ. Math. I.H.E.S. 66
  • 1988
1 Excerpt

Similar Papers

Loading similar papers…