# Is Submodularity Testable?

@article{Comandur2012IsST, title={Is Submodularity Testable?}, author={Seshadhri Comandur and Jan Vondr{\'a}k}, journal={Algorithmica}, year={2012}, volume={69}, pages={1-25} }

We initiate the study of property testing of submodularity on the boolean hypercube. Submodular functions come up in a variety of applications in combinatorial optimization. For a vast range of algorithms, the existence of an oracle to a submodular function is assumed. But how does one check if this oracle indeed represents a submodular function?Consider a function f:{0,1}n→ℝ. The distance to submodularity is the minimum fraction of values of f that need to be modified to make f submodular. If…

## Topics from this paper

## 50 Citations

On the Approximation of Submodular Functions

- Computer Science, MathematicsArXiv
- 2013

A large number of prior works imply that monotone submodular functions can be approximated by coverage functions with a factor between $O(\sqrt{n} \log n)$ and $\Omega(n^{1/3} /\log^2 n) $ and this work proves both upper and lower bounds on such approximations.

Optimal bounds on approximation of submodular and XOS functions by juntas

- Mathematics, Computer ScienceITA
- 2014

This work investigates the approximability of several classes of real-valued functions by functions of a small number of variables (juntas), and shows that 2Ω(1/e) variables are necessary even for XOS functions, and provides learning algorithms over the uniform distribution.

A pr 2 01 3 On the Approximation of Submodular Functions

- 2013

Submodular functions are a fundamental object of study in combinatorial optimization, economics, machine learning, etc. and exhibit a rich combinatorial structure. Many subclasses of submodular…

Learning submodular functions

- Mathematics, Computer ScienceSTOC '11
- 2011

This paper considers PAC-style learning of submodular functions in a distributional setting and uses lossless expanders to construct a new family of matroids which can take wildly varying rank values on superpolynomially many sets; no such construction was previously known.

Testing Real-Valued Modularity and Submodularity

- 2016

We study the question of testing whether a function f : {0, 1} → R is modular/submodular or ε-far from it (with respect to Hamming distance). We provide two results: First, it is possible to test…

Optimal Bounds on Approximation of Submodular and XOS Functions by Juntas

- Mathematics, Computer Science2013 IEEE 54th Annual Symposium on Foundations of Computer Science
- 2013

This work investigates the approximability of several classes of real-valued functions by functions of a small number of variables (juntas) and shows that 2<sup>Ω(1/ϵ)</sup> variables are necessary even for XOS functions, and provides learning algorithms over the uniform distribution.

Testing properties of boolean functions

- Mathematics
- 2012

Given oracle access to some boolean function f, how many queries do we need to test whether f is linear? Or monotone? Or whether its output is completely determined by a small number of the input…

Testing Submodularity and Other Properties of Valuation Functions

- Mathematics, Computer ScienceITCS
- 2017

We show that for any constant $\epsilon > 0$ and $p \ge 1$, it is possible to distinguish functions $f : \{0,1\}^n \to [0,1]$ that are submodular from those that are $\epsilon$-far from every…

Testing Coverage Functions

- Mathematics, Computer ScienceICALP
- 2012

An algorithm is demonstrated which makes O(m|U|) queries to an oracle of a coverage function and completely reconstructs it, giving a polytime tester for succinct coverage functions for which |U| is polynomially bounded in m.

Learning pseudo-Boolean k-DNF and submodular functions

- Computer Science, MathematicsSODA
- 2013

It is proved that any submodular function f: 0,1}^n -> {0,1,...,k} can be represented as a pseudo-Boolean 2k-DNF formula, and it is shown that an analog of Hastad's switching lemma holds if all constants associated with the terms of the formula are bounded.

## References

SHOWING 1-10 OF 62 REFERENCES

Approximating submodular functions everywhere

- Computer Science, MathematicsSODA
- 2009

The problem of approximating a non-negative, monotone, submodular function f on a ground set of size n everywhere is considered, after only poly(n) oracle queries, and it is shown that no algorithm can achieve a factor better than Ω(√n/log n), even for rank functions of a matroid.

An analysis of approximations for maximizing submodular set functions—I

- Mathematics, Computer ScienceMath. Program.
- 1978

It is shown that a “greedy” heuristic always produces a solution whose value is at least 1 −[(K − 1/K]K times the optimal value, which can be achieved for eachK and has a limiting value of (e − 1)/e, where e is the base of the natural logarithm.

Optimal bounds for monotonicity and Lipschitz testing over the hypercube

- Computer Science, MathematicsElectron. Colloquium Comput. Complex.
- 2012

A very general theorem is proved showing that edge testers work for a class of “bounded-derivative” properties, which contains both monotonicity and Lipschitz, and it is proved that the edge tester only requires O(n/e) samples (regardless of R).

Monotonicity testing over general poset domains

- Mathematics, Computer ScienceSTOC '02
- 2002

It is shown that in its most general setting, testing that Boolean functions are close to monotone is equivalent, with respect to the number of required queries, to several other testing problems in logic and graph theory.

Learning submodular functions

- Mathematics, Computer ScienceSTOC '11
- 2011

This paper considers PAC-style learning of submodular functions in a distributional setting and uses lossless expanders to construct a new family of matroids which can take wildly varying rank values on superpolynomially many sets; no such construction was previously known.

On Testing Convexity and Submodularity

- Mathematics, Computer ScienceRANDOM
- 2002

Submodular and convex functions play an important role in many applications, and in particular in combinatorial optimization. Here we study two special cases: convexity in one dimension and…

Testing Coverage Functions

- Mathematics, Computer ScienceICALP
- 2012

An algorithm is demonstrated which makes O(m|U|) queries to an oracle of a coverage function and completely reconstructs it, giving a polytime tester for succinct coverage functions for which |U| is polynomially bounded in m.

On the strength of comparisons in property testing

- Computer Science, MathematicsInf. Comput.
- 2001

It is proved that an e-test for a property of integer sequences, such as the property of the sequence being a monotone non-decreasing sequence, cannot perform less queries than the best e- test which uses only comparisons between the queried values.

A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions

- Mathematics, Computer ScienceSTOC '00
- 2000

This paper presents a combinatorial polynomial-time algorithm for minimizing submodular functions, answering an open question posed in 1981 by Grotschel, Lov asz, and Schrijver. The algorithm employs…

A combinatorial strongly polynomial algorithm for minimizing submodular functions

- Mathematics, Computer ScienceJACM
- 2001

This paper presents a combinatorial polynomial-time algorithm for minimizing submodular functions, answering an open question posed in 1981 by Grötschel, Lovász, and Schrijver. The algorithm employs…