Irreducible representations of the Heisenberg algebra in Krein spaces
@article{Mnatsakanova1998IrreducibleRO, title={Irreducible representations of the Heisenberg algebra in Krein spaces}, author={Melita Mnatsakanova and G. Morchio and Franco Strocchi and Yu. S. Vernov}, journal={Journal of Mathematical Physics}, year={1998}, volume={39}, pages={2969-2982} }
The representations of the Heisenberg algebra in Krein spaces, more generally in weakly complete inner product spaces, are classified under general regularity and irreducibility conditions. Besides the Fock representation, two other types appear; one with negative, the other with a two-sided discrete spectrum of the number operator.
25 Citations
Regular representations of theR-deformed Heisenberg algebra
- Mathematics
- 2000
We describe all the irreducible regular representations of the R-deformed Heisenberg algebra in an arbitrary nondegenerate and weakly closed space with an indefinite metric.
Weyl Representation of the Canonical Commutation Relations Algebras in a Krein Space
- Mathematics
- 2016
In the present article the existence of the Weyl representation for the canonical commutation relations algebras was proved in a Krein space.
Invariant Kreùõn subspaces, regular irreducibility and integral representations
- Mathematics
- 2008
We study unitary representations of groups in Kreuon spaces, irreducibility criteria and integral decompositions. Our main tool is the theory of Kreuon subspaces and their (reproducing) kernels and a…
Properties of the algebra ofq-deformed commutators in indefinite-metric space
- Mathematics
- 1997
We investigate representations, invariant properties, and the generalization of the q-commutator algebra in indefinite-metric space.
Infinite infrared regularization and a state space for the Heisenberg algebra
- Mathematics
- 2002
We present a method for the construction of a Krein space completion for spaces of test functions, equipped with an indefinite inner product induced by a kernel which is more singular than a…
Bogolyubov Transformations for Regular Representations of Canonical Commutation Relations in Space with an Indefinite Metric
- Mathematics
- 2013
Bogolyubov transformations for regular representations of the algebra of canonical commutation relations (CCRs) are considered in space with an indefinite metric.
Representations of Hermitian Kernels¶by Means of Krein Spaces.¶II. Invariant Kernels
- Mathematics
- 2000
Abstract: In this paper we study hermitian kernels invariant under the action of a semigroup with involution. We characterize those hermitian kernels that realize the given action by bounded…
Representations of CCR Algebras in Krein Spaces of Entire Functions
- Mathematics
- 2003
AbstractRepresentations of CCR algebras in spaces of entire functions are classified on the basis of isomorphisms between the Heisenberg CCR algebra
$$\mathcal{A}_H$$
and star algebras of…
HAAG'S THEOREM IN THE THEORIES WITH NONPHYSICAL PARTICLES
- Mathematics
- 2013
Haag's theorem is extended to the case of regular representations of the canonical commutation relations in a nondegenerate indefinite inner product space.
Von Neumann’s uniqueness theorem in theories with nonphysical particles
- Mathematics
- 2015
Von Neumann’s uniqueness theorem is extended to the class of anti-Fock representations of canonical commutation relations.
References
SHOWING 1-10 OF 21 REFERENCES
Theory of group representations and applications
- Mathematics
- 1977
The material collected in this book originated from lectures given by authors over many years in Warsaw, Trieste, Schladming, Istanbul, Goteborg and Boulder. There is no other comparable book on…
Self-adjoint algebras of unbounded operators
- Mathematics
- 1971
Unbounded *-representations of *-algebras are studied. Representations called self-adjoint representations are defined in analogy to the definition of a self-adjoint operator. It is shown that for…
Proof of the charge superselection rule in local relativistic quantum field theory
- Physics
- 1974
The paper interprets and proves the charge superselection rule within the framework of local relativistic field theory as the statement that the charge operator commutes with all quasilocal…
Indefinite Inner Product Spaces
- Mathematics
- 1974
I. Inner Product Spaces without Topology.- 1. Vector Spaces.- 2. Inner Products.- 3. Orthogonality.- 4. Isotropic Vectors.- 5. Maximal Non-degenerate Subspaces.- 6. Maximal Semi-definite Subspaces.-…
The physical principles of the quantum theory
- Mathematics
- 1932
The object of this paper is to reformulate the principles of the quantum theory as a sequence of propositions which shall be either summary statements of standard experimental procedure or hypotheses…
Mathematical Foundations of Quantum Mechanics
- Physics
- 1955
Mathematical Foundations of Quantum Mechanics was a revolutionary book that caused a sea change in theoretical physics. Here, John von Neumann, one of the leading mathematicians of the twentieth…
Bakerian Lecture - The physical interpretation of quantum mechanics
- PhysicsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
- 1942
Modern developments of atomic theory have required alterations in some of the most fundamental physical ideas. This has resulted in its being usually easier to discover the equations that describe…