Ion transport in human skeletal muscle cells: disturbances in myotonic dystrophy and Brody's disease.

Abstract

After excitation of skeletal muscle, the disturbed ion homeostasis is restored by Na+, K+ ATPase of the sarcolemma and Ca2+ ATPase of the sarcoplasmic reticulum (SR). Contrary to Na+, K+ ATPase, the concentration and isoenzyme distribution of SR Ca2+ ATPase in human skeletal muscle depend on fibre type and age. In cultured human muscle cells the concentration and activity of Na+, K+ ATPase and SR Ca2+ ATPase increase with maturation. In skeletal muscle and cultured muscle cells of patients suffering from myotonic dystrophy (MyD), the activity and the concentration of both Na+, K+ ATPase and SR Ca2+ ATPase are decreased by about 40%. In addition, we measured in cultured MyD muscle cells at rest an increased cytosolic Ca2+ concentration ([Ca2+]i) caused by active voltage-operated Ca2+ channels, which are inactive in resting control cells. However, the restoration of a stimulus-induced Ca2+ transient is unaffected. A differentiation-related disturbance of membranes or a modulation defect of membrane proteins may play a role in MyD. In skeletal muscle and cultured muscle cells of patients suffering from Brody's disease, which is characterized by impaired muscle relaxation, the SR Ca2+ ATPase activity is reduced by about 50%, but the concentrations of total SR Ca2+ ATPase and the predominant SERCA1 isoform are normal. Diseased muscle cells show a delayed restoration of [Ca2+]i after stimulation, which might be explained by structural modifications of SERCA1. Reduction of the Ca2+ release by drugs balances the excitation-relaxation cycle of the pathological cells.

5 Figures and Tables

Statistics

02040'99'01'03'05'07'09'11'13'15'17
Citations per Year

108 Citations

Semantic Scholar estimates that this publication has 108 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Benders1996IonTI, title={Ion transport in human skeletal muscle cells: disturbances in myotonic dystrophy and Brody's disease.}, author={Ad A. G. M. Benders and Ron Allan Wevers and Jacques H . Veerkamp}, journal={Acta physiologica Scandinavica}, year={1996}, volume={156 3}, pages={355-67} }