Invertibility of Sparse non-Hermitian matrices

@article{Basak2015InvertibilityOS,
title={Invertibility of Sparse non-Hermitian matrices},
author={Anirban Basak and Mark Rudelson},
journal={arXiv: Probability},
year={2015}
}
• Published 13 July 2015
• Mathematics
• arXiv: Probability
We consider a class of sparse random matrices of the form $A_n =(\xi_{i,j}\delta_{i,j})_{i,j=1}^n$, where $\{\xi_{i,j}\}$ are i.i.d.~centered random variables, and $\{\delta_{i,j}\}$ are i.i.d.~Bernoulli random variables taking value $1$ with probability $p_n$, and prove a quantitative estimate on the smallest singular value for $p_n = \Omega(\frac{\log n}{n})$, under a suitable assumption on the spectral norm of the matrices. This establishes the invertibility of a large class of sparse…
The circular law for sparse non-Hermitian matrices
• Mathematics
The Annals of Probability
• 2019
For a class of sparse random matrices of the form $A_n =(\xi_{i,j}\delta_{i,j})_{i,j=1}^n$, where $\{\xi_{i,j}\}$ are i.i.d.~centered sub-Gaussian random variables of unit variance, and
Investigate Invertibility of Sparse Symmetric Matrix
In this paper, we investigate the invertibility of sparse symmetric matrices. We will show that for an $n\times n$ sparse symmetric random matrix $A$ with $A_{ij} = \delta_{ij} \xi_{ij}$ is
Sparse random matrices have simple spectrum
• Mathematics
• 2018
Let $M_n$ be a class of symmetric sparse random matrices, with independent entries $M_{ij} = \delta_{ij} \xi_{ij}$ for $i \leq j$. $\delta_{ij}$ are i.i.d. Bernoulli random variables taking the value
Singularity of sparse Bernoulli matrices
• Mathematics
• 2020
Let $M_n$ be an $n\times n$ random matrix with i.i.d. Bernoulli(p) entries. We show that there is a universal constant $C\geq 1$ such that, whenever $p$ and $n$ satisfy $C\log n/n\leq p\leq C^{-1}$,
Invertibility via distance for noncentered random matrices with continuous distributions
The method is principally different from a standard approach involving a decomposition of the unit sphere and coverings, as well as an approach of Sankar-Spielman-Teng for non-centered Gaussian matrices.
The sparse circular law under minimal assumptions
• Mathematics
Geometric and Functional Analysis
• 2019
The circular law asserts that the empirical distribution of eigenvalues of appropriately normalized $${n \times n}$$n×n matrix with i.i.d. entries converges to the uniform measure on the unit disc as
Invertibility of adjacency matrices for random d-regular directed graphs
Let $d\geq 3$ be a fixed integer, and a prime number $p$ such that $\gcd(p,d)=1$. Let $A$ be the adjacency matrix of a random $d$-regular directed graph on $n$ vertices. We show that as a random
Invertibility of adjacency matrices for random d-regular graphs
Let $d\geq 3$ be a fixed integer and $A$ be the adjacency matrix of a random $d$-regular directed or undirected graph on $n$ vertices. We show there exist constants $\mathfrak d>0$, \begin{align*}
The smallest singular value of a shifted d-regular random square matrix
• Mathematics
Probability Theory and Related Fields
• 2018
We derive a lower bound on the smallest singular value of a random d-regular matrix, that is, the adjacency matrix of a random d-regular directed graph. Specifically, let C_1<d< c n/\log ^2
Upper bound for intermediate singular values of random matrices
In this paper, we prove that an $n\times n$ matrix $A$ with independent centered subgaussian entries satisfies $s_{n+1-l}(A) \le C_1t \frac{l}{\sqrt{n}}$ with probability at least