Corpus ID: 91184091

Invariants, Bitangents and Matrix Representations of Plane Quartics with 3-Cyclic Automorphisms

  title={Invariants, Bitangents and Matrix Representations of Plane Quartics with 3-Cyclic Automorphisms},
  author={D. Liang},
  journal={arXiv: Algebraic Geometry},
  • D. Liang
  • Published 8 February 2019
  • Mathematics
  • arXiv: Algebraic Geometry
In this work we compute the Dixmier invariants and bitangents of the plane quartics with 3,6 or 9-cyclic automorphisms, we find that a quartic curve with 6-cyclic automorphism will have 3 horizontal bitangents which form an asysgetic triple. We also discuss the linear matrix representation problem of such curves, and find a degree 6 equation of 1 variable which solves the symbolic solution of the linear matrix representation problem for the curve with 6-cyclic automorphism. 


Quartic curves and their bitangents
Interwoven is an exposition of much of the 19th century theory of plane quartics, which expresses Vinnikov quartics as spectrahedra and positive Quartics as Gram matrices and explores the geometry of Gram spectahedra. Expand
Explicit computations of invariants of plane quartic curves
  • A. Elsenhans
  • Computer Science, Mathematics
  • J. Symb. Comput.
  • 2015
A complete set of invariants for ternary quartic forms is established and four classical invariants are expressed in terms of these generators. Expand
Complete description of determinantal representations of smooth irreducible curves
Abstract Determinantal representations of algebraic curves are interesting in themselves, and their classification is equivalent to the simultaneous classification of triples of matrices. We presentExpand
Theta characteristics of an algebraic curve
© Gauthier-Villars (Editions scientifiques et medicales Elsevier), 1971, tous droits reserves. L’acces aux archives de la revue « Annales scientifiques de l’E.N.S. » (http://www.Expand
Linear matrix inequality representation of sets
This article concerns the question, Which subsets of ℝm can be represented with linear matrix inequalities (LMIs)? This gives some perspective on the scope and limitations of one of the most powerfulExpand
Über Determinanten und ihre Anwendung in der Geometrie, insbesondere auf Curven vierter Ordnung.
§. 1. Wenn die Elemente dreier Determinanten; A = -Σ±«Χ . . . <, B = 2±b»b\ . . . *;, C = so mit einander verbunden sind, dafs £* = «5*ί+«?*ϊ+ · · ·+<«# ist, so ist bekanntlich: (1.) AB = C. IchExpand
Eigenschaften der Curven vierten Grades rücksichtlich ihrer Doppeltangenten.
Seitdem Poncelet zuerst auf das Vorhandensein der Doppeltangenten bei algebraischen Curven aufmerksam gemacht *), ist bis jetzt noch wenig geschehen, die wesentlichsten Eigenschaften derselben zuExpand
Self-adjoint determinantal representations of real plane curves