# Invariant tests for multivariate normality: a critical review

@article{Henze2002InvariantTF, title={Invariant tests for multivariate normality: a critical review}, author={Norbert Henze}, journal={Statistical Papers}, year={2002}, volume={43}, pages={467-506} }

This paper gives a synopsis on affine invariant tests of the hypothesis that the unknown distribution of a d-dimensional random vector X is some nondegenerate d-variate normal distribution, on the basis of i.i.d. copies X1,...,Xn of X. Particular emphasis is given to progress that has been achieved during the last decade. Furthermore, we stress the typical diagnostic pitfall connected with purportedly ‘directed’ procedures, such as tests based on measures of multivariate skewness.

## 138 Citations

### Tests for multivariate normality based on canonical correlations

- MathematicsStat. Methods Appl.
- 2014

New affine invariant tests for multivariate normality, based on independence characterizations of the sample moments of the normal distribution, are proposed, which are found to offer higher power against many of the alternatives.

### Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$-statistics

- Mathematics
- 2020

This article gives a synopsis on new developments in affine invariant tests for multivariate normality in an i.i.d.-setting, with special emphasis on asymptotic properties of several classes of…

### Testing normality in any dimension by Fourier methods in a multivariate Stein equation

- MathematicsCanadian Journal of Statistics
- 2021

We study a novel class of affine‐invariant and consistent tests for multivariate normality. The tests are based on a characterization of the standard d‐variate normal distribution by way of the…

### Multivariate Normality Tests Based on Principal Components

- Mathematics
- 2003

In this paper, we investigate some measures as tests of multivariate normality based on principal components. The idea was proposed by Srivastava and Hui(1987). They generalized Shapiro-Wilk…

### Testing for normality in any dimension based on a partial differential equation involving the moment generating function

- MathematicsAnnals of the Institute of Statistical Mathematics
- 2019

We use a system of first-order partial differential equations that characterize the moment generating function of the d-variate standard normal distribution to construct a class of affine invariant…

### A new affine invariant test for multivariate normality based on beta probability plots

- Mathematics
- 2017

A new technique for assessing multivariate normality (MVN) is proposed in this work based on a beta transform of the multivariate normal data set. The statistic is the sum of interpoint squared…

### The Limit Distribution of an Invariant Test Statistic for Multivariate Normality

- Mathematics
- 2005

Testing for normality has always been an important part of statistical methodology. In this paper a test statistic for multivariate normality is proposed. The underlying idea is to investigate all…

### Joint Normality Test Via Two-Dimensional Projection

- Mathematics
- 2021

Extensive literature exists on how to test for normality, especially for identically and independently distributed (i.i.d) processes. The case of dependent samples has also been addressed, but only…

### A characterization of normality via convex likelihood ratios

- MathematicsStatistics & Probability Letters
- 2022

### A normality test for multivariate dependent samples

- MathematicsSignal Process.
- 2022

Most normality tests in the literature are performed for scalar and independent samples. Thus, they become unreliable when applied to colored processes, hampering their use in realistic scenarios. We…

## References

SHOWING 1-10 OF 96 REFERENCES

### A class of invariant consistent tests for multivariate normality

- Mathematics
- 1990

Let be independent identically distributed random vectors in Rd d ≥ 1 , with sample mean [Xbar] n and sample covariance matrix S n . We present a class of practicable afflne-invariant tests for the…

### A consistent test for multivariate normality based on the empirical characteristic function

- Mathematics
- 1988

AbstractLetX1,X2, …,Xn be independent identically distributed random vectors in IRd,d ⩾ 1, with sample mean
$$\bar X_n $$
and sample covariance matrixSn. We present a practicable and consistent test…

### On Mardia’s kurtosis test for multivariate normality

- Mathematics
- 1994

Let be independent identically distributed random(d-vectors with mean μ and nonsingular covariance matrix ∑ such that . We show that Mardia’s measure of multivariate kurtosis satisfies with σ2…

### A class of invariant procedures for assessing multivariate normality

- Mathematics
- 1982

SUMMARY Distribution theory pertaining to a class of invariant procedures for assessing multivariate normality is described. A Cramer-von Mises type statistic belonging to this class is investigated…

### On Tests for Multivariate Normality

- Mathematics
- 1973

Abstract The univariate skewness and kurtosis statistics, and b 2, and The W statistic proposed by Shapiro and Wilk are generalized to test a hypothesis of multivariate normality by use of S.N. Roy's…

### Some new tests for multivariate normality

- Mathematics
- 1991

SummaryA family of statistics is presented that can be used for testing goodness of fit to a parametric family. These statistics include Mardia's measure of multivariate kurtosis and Moore and…

### The asymptotic behavior of a variant of multivariate kurtosis

- Mathematics
- 1994

Let be independent identically distributed random d-dimensional column vectors with arithmetic mean [Xbar] n and empirical covariance matrix S n. Apart from the celebrated kurtosis measure of Mardia,…

### Shortcomings of generalized affine invariant skewness measures

- Mathematics
- 1999

This paper studies the asymptotic behavior of a generalization of Mardia's affine invariant measure of (sample) multivariate skewness. If the underlying distribution is elliptically symmetric, the…

### A New Graphical Test for Multivariate Normality

- Mathematics
- 1996

SYNOPTIC ABSTRACTA new methodology for assessing distributional assumptions of multivariate data, with graphical applications, is presented. The underlying procedure is based on transforming the…