Invariant functions on Lie groups and Hamiltonian flows of surface group representations

  title={Invariant functions on Lie groups and Hamiltonian flows of surface group representations},
  author={William M. Goldman},
  journal={Inventiones mathematicae},
  • W. Goldman
  • Published 1 June 1986
  • Mathematics
  • Inventiones mathematicae
Si π est le groupe fondamental d'une surface orientee fermee S et G est un groupe de Lie satisfaisant des conditions tres generales, alors l'espace Hom (π,G)/G des classes de conjugaison de representation π→G a une structure symplectique naturelle. On etudie la geometrie de cette structure symplectique a l'aide d'une famille naturelle de fonctions sur Hom(π,G)/G 
Intersection of curves on surfaces and their applications to mapping class groups
— We introduce an operation which measures the self intersections of paths on an oriented surface. As applications, we give a criterion of the realizability of a generalized Dehn twist, and derive a
Deformation spaces Hom(�,G)/G of representations of the fundamental groupof a surfacein a Lie group G ad- mit natural actions of the mapping class group Mod�, preserving a Poisson structure. When G
Action-angle coordinates for surface group representations in genus zero
We study a family of compact components of totally elliptic representations of the fundamental group of a punctured sphere into PSLp2,Rq discovered by Deroin-Tholozan. We develop a polygonal model
Poisson maps between character varieties: gluing and capping
. Let G be a compact Lie group or a complex reductive affine algebraic group. We explore induced mappings between G -character varieties of surface groups by mappings between corresponding surfaces. It
Tropicalization in Poisson Geometry and Lie Theory
Cette these est consacre a l'etude de la geometrie de Poisson et la theorie des representations en utilisant l'approche de la geometrisation et tropicalisation. Le but est de trouver des relations
A Foliation of the Space of Conjugacy Classes of Representations of a Surface Group
Let Π be the fundamental group of a closed orientable surface of genus g ≥ 1, and let R(Π, G)/G be the space of conjugacy classes of representations of Π into a connected real reductive Lie group G.
Groupoid-theoretical methods in the mapping class groups of surfaces
We provide some language for algebraic study of the mapping class groups for surfaces with non-connected boundary. As applications, we generalize our previous results on Dehn twists to any compact
Dynamique sur les espaces de représentations de surfaces non-orientables
Nous considerons l'espace de representations Hom(Pi,G) d'un groupe de surface Pi dans un groupe de Lie G, et l'espace de modules X(Pi,G) des classes de conjugaison de ces representations. Le groupe
Lie algebras of curves and loop-bundles on surfaces
A BSTRACT . W. Goldman and V. Turaev defined a Lie bialgebra structure on the Z -module generated by free homotopy classes of loops of an oriented surface (i.e. the conjugacy classes of its


The Symplectic Nature of Fundamental Groups of Surfaces
Geometric intersection functions and Hamiltonian flows on the space of measured foliations on a surface
On definit et on etudie des flots sur l'espace des feuilletages mesures sur une surface fermee et on relie ces flots a la geometrie symplectique lineaire par morceaux de cet espace, definie par W.
The local structure of Poisson manifolds
Varietes de Poisson et applications. Decomposition. Structures de Poisson lineaires. Approximation lineaire. Systemes hamiltoniens. Le probleme de linearisation. Groupes de fonction, realisations et
Lectures on Symplectic Manifolds
Introduction Symplectic manifolds and lagrangian submanifolds, examples Lagrangian splittings, real and complex polarizations, Kahler manifolds Reduction, the calculus of canonical relations,
Intersections of curves on surfaces
AbstractThe authors consider curves on surfaces which have more intersections than the least possible in their homotopy class. Theorem 1.Let f be a general position arc or loop on an orientable
Differential Geometry, Lie Groups, and Symmetric Spaces
Elementary differential geometry Lie groups and Lie algebras Structure of semisimple Lie algebras Symmetric spaces Decomposition of symmetric spaces Symmetric spaces of the noncompact type Symmetric
The Fenchel-Nielsen deformation
The uniformization theorem provides that a Riemann surface S of negative Euler characteristic has a metric of constant curvature -1. A hyperbolic structure can be understood in terms of its
On the symplectic geometry of deformations of a hyperbolic surface
Let R be a Riemann surface. In this manuscript we consider a geometry on the moduli space X(R) for R, which we regard as the space of equivalence classes of constant curvature metrics on the
Topology of Fibre Bundles
Fibre bundles, an integral part of differential geometry, are also important to physics. This text, a succint introduction to fibre bundles, includes such topics as differentiable manifolds and
Lectures in algebraic topology
Over the 2016–2017 academic year, I ran the graduate algebraic topology sequence at MIT. The first semester traditionally deals with singular homology and cohomology and Poincaré duality; the second