Invariant Rings and Quasiaffine Quotients

@inproceedings{Winkelmann2000InvariantRA,
  title={Invariant Rings and Quasiaffine Quotients},
  author={J{\"o}rg Winkelmann},
  year={2000}
}
We study Hilbert’s fourteenth problem from a geometric point of view. Nagata’s celebrated counterexample demonstrates that for an arbitrary group action on a variety the ring of invariant functions need not be isomorphic to the ring of functions of an affine variety. In this paper we will show that nevertheless it is always isomorphic to the ring of functions on a quasi-affine variety. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 16 references

Lectures on the fourteenth problem of Hilbert

M. Nagata
Tata Institute, • 1965
View 4 Excerpts
Highly Influenced

A counterexample to Hilbert’s fourteenth problem in dimension six

G. Freudenburg
Transform. Groups • 2000
View 1 Excerpt

Freudenburg, Gene: A counterexample to Hilbert’s fourteenth problem in dimension 5

Daigle, Daniel
J. Algebra 221, • 1999
View 2 Excerpts

Ga-actions on C 3 and C7

J. K. Deveney, D. Finston
Comm. Alg. 22, • 1994
View 1 Excerpt

Note on a counterexample to Hilbert’s fourteenth problem

A. A’Campo-Neuen
Indag. Math.(n.S.)5, • 1994
View 1 Excerpt

An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert’s fourteenth problem

P. Roberts
J. Alg. 132, • 1990
View 1 Excerpt

Steins, affines and Hilberts fourteenth problem

A. Neeman
Ann. of Math. 127, • 1988

Hilberts Theorem on Invariant

V. L. Popov
Soviet Math. Dokl. 20, • 1979
View 1 Excerpt

Affine open subsets of algebraic varieties and ample divisors

J. E. Goodman
Ann. Math • 1969

Algébre Commutative

N. Bourbaki
VII. Hermann • 1965
View 1 Excerpt

Similar Papers

Loading similar papers…