# Introduction to Framed Correspondences

@inproceedings{Hoyois2022IntroductionTF, title={Introduction to Framed Correspondences}, author={Marc Hoyois and Nikolai Opdan}, year={2022} }

We give an overview of the theory of framed correspondences in motivic homotopy theory. Motivic spaces with framed transfers are the analogue in motivic homotopy theory of E ∞ -spaces in classical homotopy theory, and in particular they provide an algebraic description of inﬁnite P 1 -loop spaces. We will discuss the foundations of the theory (following Voevodsky, Garkusha, Panin, Ananyevskiy, and Neshitov), some applications such as the computations of the inﬁnite loop spaces of the motivic…

## References

SHOWING 1-10 OF 14 REFERENCES

### Fundamental classes in motivic homotopy theory

- Mathematics
- 2019

We develop the theory of fundamental classes in the setting of motivic homotopy theory. Using this we construct, for any motivic spectrum, an associated bivariant theory in the sense of…

### Motivic infinite loop spaces

- MathematicsCambridge Journal of Mathematics
- 2021

We prove a recognition principle for motivic infinite P1-loop spaces over an infinite perfect field. This is achieved by developing a theory of framed motivic spaces, which is a motivic analogue of…

### The localization theorem for framed motivic spaces

- MathematicsCompositio Mathematica
- 2021

We prove the analog of the Morel–Voevodsky localization theorem for framed motivic spaces. We deduce that framed motivic spectra are equivalent to motivic spectra over arbitrary schemes, and we give…

### Hermitian K-theory via oriented Gorenstein algebras

- MathematicsJournal für die reine und angewandte Mathematik (Crelles Journal)
- 2022

Abstract We show that the hermitian K-theory space of a commutative ring R can be identified, up to 𝐀 1 {\mathbf{A}^{1}} -homotopy, with the group completion of the groupoid of oriented finite…

### Cancellation theorem

- Mathematics
- 2002

In this paper we give a direct proof of the fact that for any schemes of finite type X , Y over a Noetherian scheme S the natural map of presheaves with transfers Hom(Ztr(X),Ztr(Y ))→ Hom(Ztr(X)⊗tr…

### Algebraic K-theory of quasi-smooth blow-ups and cdh descent

- Mathematics
- 2020

We construct a semi-orthogonal decomposition on the category of perfect complexes on the blow-up of a derived Artin stack in a quasi-smooth centre. This gives a generalization of Thomason's blow-up…

### Cancellation theorem for motivic spaces with finite flat transfers

- Mathematics
- 2020

We show that the category of motivic spaces with transfers along finite flat morphisms, over a perfect field, satisfies all the properties we have come to expect of good categories of motives. In…

### Framed motives of relative motivic spheres

- Mathematics
- 2016

The category of framed correspondences $Fr_*(k)$, framed presheaves and framed sheaves were invented by Voevodsky in his unpublished notes [V2]. Based on the theory, framed motives are introduced and…

### Modules over algebraic cobordism

- MathematicsForum of Mathematics, Pi
- 2020

Abstract We prove that the $\infty $-category of $\mathrm{MGL} $-modules over any scheme is equivalent to the $\infty $-category of motivic spectra with finite syntomic transfers. Using the…

### Cohomological theory of presheaves with transfers

- Mathematics

4 Zariski sheaves associated with pretheories. 21 4.1 Technical lemmas. . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Pretheories in a neighborhood of a smooth subscheme. . . . . . 27 4.3…