Intrinsic volumes and f-vectors of random polytopes

@inproceedings{Bfir2005IntrinsicVA,
  title={Intrinsic volumes and f-vectors of random polytopes},
  author={Imre Bfir},
  year={2005}
}
  • Imre Bfir
  • Published 2005
Let K c R d be a convex body (a convex compact set with noncmpty interior) and choose points xl ..... x.~K randomly, independently and according to the uniform distribution on K. Then K. =conv{xt,...,x.} is a random polytope. It is clear that, with high probability, K , gets nearer and nearer to K as n tends to infinity. There has been a lot of research to determine how well K. approximates K in various measures of approximation. These measures usually are the expectation of 9(K) tp(K.) where… CONTINUE READING
Highly Influential
This paper has highly influenced 10 other papers. REVIEW HIGHLY INFLUENTIAL CITATIONS

From This Paper

Topics from this paper.
27 Citations
15 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 15 references

Boundary structure and curvature properties of convex bodies

  • R. Schneider
  • Random approximation of convex sets , Microscopy
  • 1988

Convex bodies, economic cap covering, random polytopcs

  • I. JilL llmy, D. G. Latman
  • Mathemalika 35,
  • 1988

Einige Probleme der Polyedrischen Approximation

  • J. A. Wieacker
  • Diplomarbeit, Freiburg i. Br
  • 1987

Macbeath, A.M.: A theorem off non-homogeneous lattices

  • P. McMullen
  • Ann. Math. 56,
  • 1986

Uber eine Formei Biaschkes zur Aftinobefflache

  • K. LeichtweiB
  • Stud . Math . Hung .
  • 1986

Random polytopes in a convex body

  • R. Schneider, J. A. Wieacker
  • Z . Wahrscheinlichkeitsth . Verw Geb .
  • 1980

Random approximation of convex sets, Microscopy

  • R. Schneider
  • Proc. Geom. Symp., Siegen
  • 1978

Nonlinear angle - sum relations for polyhedral cone and polytopes

  • P. McMullen
  • Math . Proc . Camb . Phil . Soe .
  • 1975

On the mean volume of a random polytope in a convex set

  • H. Groemer
  • Arch . Math .
  • 1974

The convex hull of a random set of points, Biometrika

  • B. Efron
  • Arch. Math.,
  • 1970

Similar Papers

Loading similar papers…