Intertwining technique for the one-dimensional stationary Dirac equation

@inproceedings{Nieto2003IntertwiningTF,
  title={Intertwining technique for the one-dimensional stationary Dirac equation},
  author={Luis Miguel Loso Nieto and A. A. Pecheritsin and Boris F. Samsonov},
  year={2003}
}
The technique of differential intertwining operators (or Darboux transformation operators) is systematically applied to the one-dimensional Dirac equation. The following aspects are investigated: factorization of a polynomial of Dirac Hamiltonians, quadratic supersymmetry, closed extension of transformation operators, chains of transformations, and finally particular cases of pseudoscalar and scalar potentials. The method is widely illustrated by numerous examples. 
BETA

Figures from this paper.

Citations

Publications citing this paper.
SHOWING 1-10 OF 17 CITATIONS

References

Publications referenced by this paper.
SHOWING 1-10 OF 47 REFERENCES

J

Y. Nogami, F. M. Toyama
  • Phys. A 30
  • 1997
VIEW 24 EXCERPTS
HIGHLY INFLUENTIAL

Theor

V. G. Bagrov, B. F. Samsonov
  • Math. Phys. 104
  • 1995
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

J

M. M. Crum Quart
  • Math. Ser 2, 6
  • 1955
VIEW 23 EXCERPTS
HIGHLY INFLUENTIAL

Phys

H. Hull, T. E. Infeld
  • Rev. 74 (1948), 905; Phys. Rev. 59 (1941), 737; Rev. Mod. Phys. 53
  • 1951
VIEW 12 EXCERPTS
HIGHLY INFLUENTIAL

Phys

B. F. Samsonov
  • Lett. A 263
  • 1999
VIEW 3 EXCERPTS
HIGHLY INFLUENTIAL

Theor

M. A. Salle
  • Math. Phys. 53
  • 1982
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

Introduction to Spectral Theory

M. B. Levitan, I. S. Sargsian
  • American Mathematical Siciety, Providence, Rhode Island
  • 1975
VIEW 3 EXCERPTS
HIGHLY INFLUENTIAL

B

N. Debergh, A. A. Pecheritsin
  • F. Samsonov and B. Van Den Bossche, J. Phys. A 35
  • 2002
VIEW 1 EXCERPT

B

N. Debergh, A. A. Pecheritsin
  • F. Samsonov and B. Van Den Bossche, J. Phys. A 35
  • 2002
VIEW 1 EXCERPT

Similar Papers