Intersection theory from duality and replica

@inproceedings{BrzinIntersectionTF,
  title={Intersection theory from duality and replica},
  author={Edouard Br{\'e}zin and S. Hikami}
}
Kontsevich's work on Airy matrix integrals has led to explicit results for the intersection numbers of the moduli space of curves. In this article we show that a duality between k-point functions on N × N matrices and N-point functions of k × k matrices, plus the replica method, familiar in the theory of disordered systems, allows one to recover Kontsevich's results on the intersection numbers, and to generalize them to other models. This provides an alternative and simple way to compute… CONTINUE READING

From This Paper

Topics from this paper.
4 Citations
13 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 13 references

Shih JHEP

  • A Hashimoto, Min-Xin Huang, A Klemm
  • Shih JHEP
  • 2005

Int.Math.Res. Not

  • S Shadrin
  • Int.Math.Res. Not
  • 2003
1 Excerpt

Intern. Math. Research. Notices

  • A Okounkov
  • Intern. Math. Research. Notices
  • 2002

Commun. Math. Phys

  • E Brézin, S Hikami
  • Commun. Math. Phys
  • 2000

Phys. Rev. E55

  • E Brézin, S Hikami
  • Phys. Rev. E55
  • 1997
1 Excerpt

Phys. Rev. E56

  • E Brézin, S Hikami
  • Phys. Rev. E56
  • 1997

Nucl. Phys. B

  • E Brézin, S Hikami
  • Nucl. Phys. B
  • 1996

Comm. Math. Phys

  • M Adler, P Van Moerbeke
  • Comm. Math. Phys
  • 1992
1 Excerpt

Int. Journ. Mod. Phys. A7

  • C Itzykson, J.-B Zuber
  • Int. Journ. Mod. Phys. A7
  • 1992
1 Excerpt

Similar Papers

Loading similar papers…