Intersection Multiplicities over Gorenstein Rings

@inproceedings{Miller2000IntersectionMO,
  title={Intersection Multiplicities over Gorenstein Rings},
  author={Claudia M. Miller and Anurag K. Singh},
  year={2000}
}
Abstract Let R be a complete local ring of dimension d over a perfect field of prime characteristic p, and let M be an R-module of finite length and finite projective dimension. S. Dutta showed that the equality limn→∞ l(F n R (M)) p = l(M) holds when the ring R is a complete intersection or a Gorenstein ring of dimension at most 3. We construct a module over a Gorenstein ring R of dimension five for which this equality fails to hold. This then provides an example of a nonzero Todd class τ3(R… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 11 references

Multiplicities and Chern classes in local algebra

  • Ro4. P. Roberts
  • 1998

A remark on the Riemann-Roch formula on affine schemes associated with Noetherian local rings

  • Ku. K. Kurano
  • Tôhoku Math. J
  • 1996

Complexes with homology of finite length and Frobenius functors

  • Sei. G. Seibert
  • J. Algebra
  • 1989

Intersection theorems, in Commutative algebra, Math

  • Ro3. P. Roberts
  • Sci. Res. Inst. Publ. 15 Springer-Verlag,
  • 1989

Localization on singular varieties

  • Le. M. Levine
  • Invent. Math
  • 1988

Kurano , A remark on the RiemannRoch formula on affine schemes associated with Noetherian local rings

  • K. Ku
  • Tˆohoku Math . J .
  • 1985

théorie des complexes parfaits, in Commutative algebra

  • Sz. L. Szpiro, Sur la
  • Durham 1981, London Math. Soc. Lecture Note…
  • 1982

Dimension projective finie et cohomologie locale

  • PS1. C. Peskine, L. Szpiro
  • Inst. Hautes Études Sci. Publ. Math
  • 1973

Szpiro , Dimension projective finie et cohomologie locale

  • Mi. C. Miller, L.
  • Inst . Hautes Études Sci . Publ . Math .
  • 1973

Algèbre locale.Multiplicités, Lecture Notes in Mathematics, 11 Springer-Verlag, Berlin-New

  • Ser. J.-P. Serre
  • 1965

Similar Papers

Loading similar papers…