- Published 2015 in The Journal of chemical physics

Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ1(f), the frequency dispersion of the third-order dielectric susceptibility, χ3(f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ1(f) and χ3(f) is the characteristic of the many-body relaxation dynamics of interacting systems which are governed solely by the intermolecular potential, and thermodynamic condition plays no role in this respect. Although linked to χ3(f), dynamic heterogeneity is one of the parallel consequences of the many-body dynamics, and it should not be considered as the principal control parameter for the other dynamic properties of glassforming systems. Results same as χ3(f) at elevated pressures had been obtained before by molecular dynamics simulations from the four-points correlation function and the intermediate scattering function. Naturally all properties obtained from the computer experiment, including dynamics heterogeneity, frequency dispersion, the relation between the α- and JG β-relaxation, and the breakdown of the Stokes-Einstein relation, are parallel consequences of the many-body relaxation dynamics governed by the intermolecular potential.

@article{Ngai2015InterpretingTN,
title={Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model.},
author={K L Ngai},
journal={The Journal of chemical physics},
year={2015},
volume={142 11},
pages={114502}
}