Interpolation operators in Orlicz-Sobolev spaces

  title={Interpolation operators in Orlicz-Sobolev spaces},
  author={Lars Diening and Michael Ruzicka},
  journal={Numerische Mathematik},
We study classical interpolation operators for finite elements, like the Scott–Zhang operator, in the context of Orlicz–Sobolev spaces. Furthermore, we show estimates for these operators with respect to quasi-norms which appear in the study of systems of p-Laplace type. Mathematics Subject Classification (2000) 65N30 · 65N15 · 65D05 · 35J60 · 46E30 

From This Paper

Topics from this paper.


Publications citing this paper.
Showing 1-10 of 12 extracted citations


Publications referenced by this paper.
Showing 1-10 of 14 references

Fractional estimates for non-differentiable elliptic systems with general growth

L. Diening, F. Ettwein
Mathematische Fakultät, Albert-Ludwigs-Universität Freiburg • 2005
View 2 Excerpts

Global regularity in fractional order Sobolev spaces for the p-Laplace equation on polyhedral domains

C. Ebmeyer, W. B. Liu, M. Steinhauer
Z. Anal. Anwendungen • 2005

Global regularity in nikolskij spaces for elliptic equations with p-structure on polyhedral domains

C. Ebmeyer
Nonlin Anal 63(6–7), • 2005

Quasi-norm interpolation error estimates for finite element approximations of problems with p–structure

C. Ebmeyer, W. B. Liu
Numer. Math. 100, • 2005