Interpolation between Sobolev spaces in Lipschitz domains with an application to multigrid theory

@inproceedings{Bramble1995InterpolationBS,
  title={Interpolation between Sobolev spaces in Lipschitz domains with an application to multigrid theory},
  author={James H. Bramble},
  year={1995}
}
In this paper we describe an interpolation result for the Sobolev spaces //¿(fi) where Í2 is a bounded domain with a Lipschitz boundary. This result is applied to derive discrete norm estimates related to multilevel preconditioners and multigrid methods in the finite element method. The estimates are valid for operators of order 2m with Dirichlet boundary conditions. 

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
SHOWING 1-9 OF 9 REFERENCES

Multigrid methods, Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, London

  • J. H. Bramble
  • 1993
2 Excerpts

New estimates for multigrid algorithms including the V-cycle

  • J. H. Bramble, J. E. Pasciak
  • Math. Comp
  • 1993
2 Excerpts

Interpolation d'espaces de Sobolev avec conditions aux limites de type mêlé

  • J.-L. Zolesio
  • C.R. Acad. Sei. Paris
  • 1977
1 Excerpt

Peetre, Sur une classe d'espaces d'interpolation

  • J.J.L. Lions
  • Inst. Hautes Études Sei. Publ. Math
  • 1964
2 Excerpts

Similar Papers

Loading similar papers…