A subset of a discrete group $G$ is called completely Sidon if its span in $C^*(G)$ is completely isomorphic to the operator space version of the space $\ell_1$ (i.e. $\ell_1$ equipped with its maximal operator space structure). We recently proved a generalization to this context of Drury's classical union theorem for Sidon sets: completely Sidon sets are stable under finite unions. We give a different presentation of the proof emphasizing the "interpolation property" analogous to the one Drury… CONTINUE READING