Interplay among tetrahedrane, butterfly diradical, and planar rhombus structures in the chemistry of the binuclear iron carbonyl phosphinidene complexes Fe2(CO)6(PX)2.

Abstract

Density functional theory studies on a series of Fe2(CO)6(PX)2 derivatives show the tetrahedrane to be the most stable for the alkyl (X = Me, tBu), P-H (X = H), and chloro (X = Cl) derivatives. However, butterfly diradical and planar rhombus structures are found to be more stable than tetrahedranes for the amino (X = NH2, NMe2, and NiPr2) and aryloxy (R = 2,6-tBu2-4-Me-C6H2O) derivatives. For the chloro (X = Cl) and methoxy (X = OMe) derivatives energetically accessible bishomotetrahedrane Fe2(CO)6P2(mu-X)2 isomers are observed in which the X substituents on the phosphorus atoms interact with the iron atom to form two direct Fe-X bonds at the expense of two of the four Fe-P bonds. In addition, the global minimum for the hydroxy (X = OH) derivative is an unusual FeP-butterfly structure with a central Fe-P bond as well as two external Fe-P bonds, one external P-P bond, and one external Fe=Fe double bond. Comparison of calculated with experimental nu(CO) frequencies shows that low-temperature Nujol matrix photolysis of (iPr2NP)2COFe2(CO)6 leads to a planar rhombus rather than a tetrahedrane isomer of Fe2(CO)6(PNiPr2)2.

DOI: 10.1021/ja0748229

12 Figures and Tables

Cite this paper

@article{SilaghiDumitrescu2008InterplayAT, title={Interplay among tetrahedrane, butterfly diradical, and planar rhombus structures in the chemistry of the binuclear iron carbonyl phosphinidene complexes Fe2(CO)6(PX)2.}, author={Ioan Silaghi-Dumitrescu and Thomas E. Bitterwolf and R. Bruce King}, journal={Journal of the American Chemical Society}, year={2008}, volume={130 3}, pages={901-6} }