Intermediate partitioning kinetic isotope effects for the NIH shift of 4-hydroxyphenylpyruvate dioxygenase and the hydroxylation reaction of hydroxymandelate synthase reveal mechanistic complexity.

Abstract

4-Hydroxyphenylpyruvate dioxygenase (HPPD) and hydroxymandelate synthase (HMS) are similar enzymes that catalyze complex dioxygenation reactions using the substrates 4-hydroxyphenylpyruvate (HPP) and dioxygen. Both enzymes decarboxylate HPP and then hydroxylate the resulting hydroxyphenylacetate (HPA). The hydroxylation reaction catalyzed by HPPD displaces… (More)
DOI: 10.1021/bi400534q

Topics

Cite this paper

@article{Shah2013IntermediatePK, title={Intermediate partitioning kinetic isotope effects for the NIH shift of 4-hydroxyphenylpyruvate dioxygenase and the hydroxylation reaction of hydroxymandelate synthase reveal mechanistic complexity.}, author={Dhara D Shah and John Conrad and Graham R. Moran}, journal={Biochemistry}, year={2013}, volume={52 35}, pages={6097-107} }