Interfacial interaction between low-energy surfaces

Abstract

This review is concerned primarily with the correlation between the interfacial interactions and the constitutive properties of low-energy organic surfaces. It starts with a discussion on the estimation of the surface free energy of organic solids from contact angles, followed by a review of the surface energetics and adhesion. The experimental measurements of surface free energy, in most cases, are themselves dependent upon the specific models of interfacial energetics and therefore are indirect. A direct method of estimating adhesion and surface free energy is based on contact mechanics, which measures the deformation produced on contacting elastic semispheres under the influence of surface forces and extemaI loads. Since the equilibrium is described by the balance of the elastic and surface forces of the system, the load-deformation data can be translated directly to estimate the adhesion and surface free energies. In most cases however, the contact deformations obtained from the loading and unloading cycles exhibit hysteresis, which are sensitive to the structure and chemical compositions of the interfaces. For non-hysteretic systems, the surface free energies obtained from these contact deformations compare well with the values obtained from contact angles. The application of this method to the studies of dispersion and hydrogen-bonding interaction is reviewed.

41 Figures and Tables

Cite this paper

@inproceedings{Chaudhury2004InterfacialIB, title={Interfacial interaction between low-energy surfaces}, author={Manoj K Chaudhury}, year={2004} }