Interaction of substance P antagonists with substance P receptors on dispersed pancreatic acini.

Abstract

In the present study we examined the abilities of three analogs of substance P, [D-Pro2-, D-Phe7-, D-Trp9]-substance P, [D-Pro2-, D- Trp7 ,9]-substance P and [D-Arg1-, D-Pro2-, D- Trp7 ,9-, Leu11 ]-substance P to alter substance P-induced changes in pancreatic acinar cell function and to occupy substance P receptors. At 30 microM, each analog of substance P lacked agonist activity and inhibited amylase secretion stimulated by substance P receptor agonists. The inhibition was reversible and specific for peptides that interact with substance P receptors (physalaemin, substance P, eledoisin, kassinin ). The analogs of substance P did not inhibit the actions of cholecystokinin, caerulein, gastrin, carbamylcholine, secretin, vasoactive intestinal peptide, PHI, ionophore A23187 or 8Br -cAMP. At high concentrations, [D-Arg1-, D-Pro2-, D- Trp7 ,9-, Leu11 ]-substance P, but not [D-Pro2-, D- Trp7 ,9]-substance P or [D-Pro2-, D-Phe7-, D-Trp9]-substance P, caused a small but significant inhibition of bombesin-stimulated amylase release. For each analog of substance P, the inhibition was competitive in nature in that there was a rightward shift of the dose-response curve for physalaemin-stimulated amylase secretion with no change in efficacy. From Schild plots of the ability of [D-Arg1-, D-Pro2-, D- Trp7 ,9-, Leu11 ]-substance P to inhibit either substance p- or physalaemin-stimulated amylase release, the slopes were not different from unity. For each analog of substance P, there was a close correlation between its ability to inhibit substance P- or physalaemin-stimulated amylase release and its ability to inhibit binding of 125I-labeled substance P or 125I-labeled physalaemin. [D-Arg1-, D-Pro2-, D- Trp7 ,9-, Leu11 ]-substance P was 2-fold more potent than [D-Pro2-, D- Trp7 ,9]-substance P which was 4-fold more potent than [D-Pro2-, D-Phe7-, D-Trp9]-substance P, (i.e., pA2 6.1, 5.9, and 5.2, respectively). For each analog, the dose-response curve for its ability to inhibit physalaemin-stimulated amylase release was superimpossible on the dose-response curve for its ability to inhibit binding of 125I-labeled physalaemin. These results indicate that each of these analogs of substance P is a specific competitive inhibitor of the action of the substance P on dispersed acini from guinea-pig pancreas, and that their abilities to inhibit substance P-induced changes in acinar cell function can be accounted for by their abilities to occupy the substance P receptor.

Cite this paper

@article{Jensen1984InteractionOS, title={Interaction of substance P antagonists with substance P receptors on dispersed pancreatic acini.}, author={Robert T. Jensen and Stephen W . Jones and Ying-Ta Lu and Jianliang Xu and Karl Folkers and Jason D. Gardner}, journal={Biochimica et biophysica acta}, year={1984}, volume={804 2}, pages={181-91} }