Intelligent Learning Algorithms for Active Vibration Control

Abstract

This correspondence presents an investigation into the comparative performance of an active vibration control (AVC) system using a number of intelligent learning algorithms. Recursive least square (RLS), evolutionary genetic algorithms (GAs), general regression neural network (GRNN), and adaptive neuro-fuzzy inference system (ANFIS) algorithms are proposed to develop the mechanisms of an AVC system. The controller is designed on the basis of optimal vibration suppression using a plant model. A simulation platform of a flexible beam system in transverse vibration using a finite difference method is considered to demonstrate the capabilities of the AVC system using RLS, GAs, GRNN, and ANFIS. The simulation model of the AVC system is implemented, tested, and its performance is assessed for the system identification models using the proposed algorithms. Finally, a comparative performance of the algorithms in implementing the model of the AVC system is presented and discussed through a set of experiments.

DOI: 10.1109/TSMCC.2007.900640

Extracted Key Phrases

11 Figures and Tables

Cite this paper

@article{Madkour2007IntelligentLA, title={Intelligent Learning Algorithms for Active Vibration Control}, author={A. Madkour and M. Alamgir Hossain and Keshav P. Dahal and Hongnian Yu}, journal={IEEE Trans. Systems, Man, and Cybernetics, Part C}, year={2007}, volume={37}, pages={1022-1033} }