Integrated Architectures for Learning , Planning , and ReactingBased

Abstract

This paper extends previous work with Dyna, a class of architectures for intelligent systems based on approximating dynamic programming methods. Dyna architectures integrate trial-and-error (reinforcement) learning and execution-time planning into a single process operating alternately on the world and on a learned model of the world. In this paper, I present and show results for two Dyna archi-tectures. The Dyna-PI architecture is based on dynamic programming's policy iteration method and can be related to existing AI ideas such as evaluation functions and universal plans (reactive systems). Using a navigation task, results are shown for a simple Dyna-PI system that simultaneously learns by trial and error, learns a world model, and plans optimal routes using the evolving world model. The Dyna-Q architecture is based on Watkins's Q-learning, a new kind of reinforcement learning. Dyna-Q uses a less familiar set of data structures than does Dyna-PI, but is arguably simpler to implement and use. We show that Dyna-Q architectures are easy to adapt for use in changing environments.

Extracted Key Phrases

Cite this paper

@inproceedings{Sutton2006IntegratedAF, title={Integrated Architectures for Learning , Planning , and ReactingBased}, author={Richard S. Sutton}, year={2006} }