Integral representations and asymptotic expansions for Shannon and Renyi entropies

@inproceedings{Knessl1998IntegralRA,
  title={Integral representations and asymptotic expansions for Shannon and Renyi entropies},
  author={Charles Knessl},
  year={1998}
}
Abstract We derive integral representations for the Shannon and Renyi entropies associated with some simple probability distributions. These include the Poisson, binomial, and negative binomial distributions. Then we obtain full asymptotic expansions for the entropies. 

Citations

Publications citing this paper.
SHOWING 1-10 OF 20 CITATIONS

Entropy power inequality for a family of discrete random variables

  • 2011 IEEE International Symposium on Information Theory Proceedings
  • 2011
VIEW 4 EXCERPTS
CITES METHODS & BACKGROUND
HIGHLY INFLUENCED

Sharp Bounds on the Entropy of the Poisson Law and Related Quantities

  • IEEE Transactions on Information Theory
  • 2010
VIEW 6 EXCERPTS
CITES BACKGROUND & METHODS
HIGHLY INFLUENCED

Asymptotics of Entropy of the Dirichlet-Multinomial Distribution

Krzysztof Turowski, Philippe Jacquet, Wojciech Szpankowski
  • 2019 IEEE International Symposium on Information Theory (ISIT)
  • 2019
VIEW 1 EXCERPT

Expressions for the Entropy of Basic Discrete Distributions

  • IEEE Transactions on Information Theory
  • 2019
VIEW 2 EXCERPTS
CITES METHODS & RESULTS

Expressions for the Entropy of Binomial-Type Distributions

  • 2018 IEEE International Symposium on Information Theory (ISIT)
  • 2017

On structural entropy of uniform random intersection graphs

  • 2017 IEEE International Symposium on Information Theory (ISIT)
  • 2017
VIEW 2 EXCERPTS
CITES BACKGROUND & METHODS