Integral closure of Noetherian rings

@inproceedings{Gianni1997IntegralCO,
  title={Integral closure of Noetherian rings},
  author={P. Gianni and Barry M. Trager},
  booktitle={ISSAC},
  year={1997}
}
  • P. Gianni, Barry M. Trager
  • Published in ISSAC 1997
  • Mathematics, Computer Science
  • After giving a proposition which reduces the problem of computing the integral closure of a general noetherian ring to the three problems: . Compute a universal denominator d (element in the conductor). . Compute radical of the ideal generated by d. . Compute ideal quotients we show that for the common case of affine domains, i.e. domains which are finitely generated over fields, of characteristic zero, we can use an effective localization in order to perform most of the computation in one… CONTINUE READING
    17 Citations

    Topics from this paper

    On computing the integral closure
    • 6
    Normalization of rings
    • 22
    • Highly Influenced
    • PDF
    Computation of unirational fields
    • 9
    • PDF
    Integral closures of ideals and rings
    • PDF
    Integral closure of ideals, rings, and modules
    • 628
    • PDF
    Primary Decomposition: Algorithms and Comparisons
    • 74
    • PDF
    Algorithmic ideal theory
    Presentations and Representations of Groups
    • W. Plesken
    • Mathematics, Computer Science
    • Algorithmic Algebra and Number Theory
    • 1997
    • 4