Integrability of oscillatory functions on local fields: Transfer principles

@article{Cluckers2014IntegrabilityOO,
  title={Integrability of oscillatory functions on local fields: Transfer principles},
  author={R. Cluckers and J. Gordon and Immanuel Halupczok},
  journal={Duke Mathematical Journal},
  year={2014},
  volume={163},
  pages={1549-1600}
}
  • R. Cluckers, J. Gordon, Immanuel Halupczok
  • Published 2014
  • Mathematics
  • Duke Mathematical Journal
  • For oscillatory functions on local fields coming from motivic exponential functions, we show that integrability over Q n p implies integrability over F p ((t)) n for large p , and vice versa. More generally, the integrability only depends on the isomorphism class of the residue field of the local field, once the characteristic of the residue field is large enough. This principle yields general local integrability results for Harish-Chandra characters in positive characteristic as we show in… CONTINUE READING
    Uniform analysis on local fields and applications to orbital integrals
    • 4
    • PDF
    Exponential-constructible functions in P-minimal structures
    • 1
    • Highly Influenced
    • PDF
    Integration and cell Decomposition in P-Minimal Structures
    • 7
    • Highly Influenced
    • PDF

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 65 REFERENCES
    Integration in valued fields
    • 121
    • PDF
    Integration in valued fields
    • 121
    • PDF
    Uniform p-adic cell decomposition and local zeta functions.
    • 151
    • PDF
    Uniform p-adic cell decomposition and local zeta functions.
    • 151
    • Highly Influential
    • PDF