# Integrability of Jacobi structures

@article{Crainic2004IntegrabilityOJ, title={Integrability of Jacobi structures}, author={Marius Crainic and C. Zhu}, journal={arXiv: Differential Geometry}, year={2004} }

We discuss the integrability of Jacobi manifolds by contact groupoids, and then look at what the Jacobi point of view brings new into Poisson geometry. In particular, using contact groupoids, we prove a Kostant-type theorem on the prequantization of symplectic groupoids, which answers a question posed by Weinstein and Xu \cite{prequan}. The methods used are those of Crainic-Fernandes on $A$-paths and monodromy group(oid)s of algebroids. In particular, most of the results we obtain are valid…

## 9 Citations

### Holomorphic Jacobi Manifolds and Complex Contact Groupoids

- Mathematics
- 2017

This is the second part of a series of two papers dedicated to a systematic study of holomorphic Jacobi structures. In the first part, we introduced and study the concept of a holomorphic Jacobi…

### Holomorphic Jacobi manifolds and holomorphic contact groupoids

- MathematicsMathematische Zeitschrift
- 2019

This paper belongs to a series of works aiming at exploring generalized (complex) geometry in odd dimensions. Holomorphic Jacobi manifolds were introduced and studied by the authors in a separate…

### Dirac-Jacobi Bundles

- Mathematics
- 2015

We show that a suitable notion of Dirac-Jacobi structure on a generic line bundle $L$ is provided by Dirac structures in the omni-Lie algebroid of $L$. Dirac-Jacobi structures on line bundles…

### Geometric quantization of symplectic and Poisson manifolds

- Mathematics
- 2014

The first part of this thesis provides an introduction to recent development in geometric quantization of symplectic and Poisson manifolds, including modern refinements involving Lie groupoid theory…

### Gauged sigma-models with nonclosed 3-form and twisted Jacobi structures

- Mathematics
- 2020

We study aspects of two-dimensional nonlinear sigma models with Wess-Zumino term corresponding to a nonclosed 3-form, which may arise upon dimensional reduction in the target space. Our goal in this…

### A Groupoid Approach to Quantization

- Mathematics
- 2006

Many interesting $C∗$-algebras can be viewed as quantizations of Poisson manifolds. I propose that a Poisson manifold may be quantized by a twisted polarized convolution $C∗$-algebra of a symplectic…

### Geometric quantization and non-perturbative Poisson sigma model

- Mathematics
- 2005

In this note we point out the striking relation between the conditions arising within geometric quantization and the non-perturbative Poisson sigma model. Starting from the Poisson sigma model, we…

### Quantization of Planck's Constant

- Mathematics
- 2013

This paper is about the role of Planck's constant, $\hbar$, in the geometric quantization of Poisson manifolds using symplectic groupoids. In order to construct a strict deformation quantization of a…

## References

SHOWING 1-10 OF 20 REFERENCES

### Sur l'intégration des algèbres de Lie locales et la préquantification

- Mathematics
- 1997

This self-containt paper is devoted to the study of Lie groups and algebras in infinite dimension by mean of a method built on the theories of Lie groupoids, Lie algebroids and diffeologies: we are…

### On integrability of infinitesimal actions

- Mathematics
- 2000

We use foliations and connections on principal Lie groupoid bundles to prove various integrability results for Lie algebroids. In particular, we show, under quite general assumptions, that the…

### Contact reduction and groupoid actions

- Mathematics
- 2004

We introduce a new method to perform reduction of contact manifolds that extends Willett's and Albert's results. To carry out our reduction procedure all we need is a complete Jacobi map J: M → Γ 0…

### Integration of twisted Dirac brackets

- Mathematics
- 2003

Given a Lie groupoid G over a manifold M, we show that multiplicative 2-forms on G relatively closed with respect to a closed 3-form phi on M correspond to maps from the Lie algebroid of G into T* M…

### Extensions of symplectic groupoids and quantization.

- Mathematics
- 1991

An important role of Poisson manifolds is äs intermediate objects between ordinary manifolds, with their commutative algebras of functions, and the "noncommutative spaces" of quantum mechanics. Up to…

### Differentiable and algebroid cohomology, Van Est isomorphisms, and characteristic classes

- Mathematics
- 2000

AbstractIn the first section we discuss Morita invariance of
differentiable/algebroid cohomology.In the second section we extend the Van Est isomorphism to
groupoids. As a first application we…

### Poisson sigma models and symplectic groupoids

- Mathematics
- 2000

We consider the Poisson sigma model associated to a Poisson manifold. The perturbative quantization of this model yields the Kontsevich star product formula. We study here the classical model in the…

### Geometric Models for Noncommutative Algebras

- Mathematics
- 1999

UNIVERSAL ENVELOPING ALGEBRAS Algebraic constructions The Poincare-Birkhoff-Witt theorem POISSON GEOMETRY Poisson structures Normal forms Local Poisson geometry POISSON CATEGORY Poisson maps…