Integrability and reduction of Poisson group actions 1 by

  title={Integrability and reduction of Poisson group actions 1 by},
  author={Luca Stefanini},
In this paper we study Poisson actions of complete Poisson groups, without any connectivity assumption or requiring the existence of a momentum map. For any complete Poisson group G with dual G⋆ we obtain a suitably connected integrating symplectic double groupoid S. As a consequence, the cotangent lift of a Poisson action on an integrable Poisson manifold P can be integrated to a Poisson action of the symplectic groupoid S →→G on the symplectic groupoid for P . Finally, we show that the… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.
1 Citations
28 References
Similar Papers


Publications citing this paper.


Publications referenced by this paper.
Showing 1-10 of 28 references

Symplectic groupoids of reduced Poisson spaces

  • P. Xu
  • C. R. Acad. Sci. Paris Sr. I Math. 314
  • 1992
Highly Influential
6 Excerpts

Groupöıdes symplectiques doubles des groupes de Lie-Poisson

  • J. H. Lu, A. Weinstein
  • C. R. Acad. Sci. Paris Sr. I Math. 309
  • 1989
Highly Influential
7 Excerpts

Moments and reduction for symplectic groupoids

  • K. Mikami, A. Weinstein
  • Publ. Res. Inst. Math. Sci. 24
  • 1988
Highly Influential
7 Excerpts

Integration of Lie bialgebroids

  • K.C.H. Mackenzie, P. Xu
  • Topology 39
  • 2000
Highly Influential
3 Excerpts

On symplectic double groupoids and the duality of Poisson groupoids

  • K.C.H. Mackenzie
  • Internat. J. Math. 10
  • 1999
Highly Influential
3 Excerpts

Coisotropic calculus and Poisson groupoids

  • A. Weinstein
  • J. Math. Soc. Japan 40
  • 1988
Highly Influential
3 Excerpts

Similar Papers

Loading similar papers…