• Corpus ID: 214611722

Inseparable coverings of rational double points in positive characteristic

@article{Matsumoto2020InseparableCO,
  title={Inseparable coverings of rational double points in positive characteristic},
  author={Yuya Matsumoto},
  journal={arXiv: Algebraic Geometry},
  year={2020}
}
  • Y. Matsumoto
  • Published 23 March 2020
  • Mathematics
  • arXiv: Algebraic Geometry
We classify purely inseparable morphisms of degree $p$ between rational double points (RDPs) in characteristic $p$. Using such morphisms, we show that any RDP admit a finite smooth covering. 

Tables from this paper

References

SHOWING 1-10 OF 16 REFERENCES
INSEPARABLE MORPHISMS OF ALGEBRAIC SURFACES
We prove that no regular vector field exists on an algebraic K3 surface defined over an algebraically closed field of finite characteristic.Bibliography: 19 titles.
Rational singularities, with applications to algebraic surfaces and unique factorization
© Publications mathématiques de l’I.H.É.S., 1969, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://
Torsors over the rational double points in characteristic p (2021), available at https://arxiv.org/abs/2110.03650v1
  • 2021
μn-actions on K3 surfaces in positive characteristic (2020), available at http://arxiv.org/abs/1710.07158v3
  • 2020
μn-actions on K3 surfaces in positive characteristic (2020), available at https://arxiv.org/abs/1710.07158v3
  • 2020
Inseparable maps on $W_n$-valued Ext groups of non-taut rational double point singularities and the height of K3 surfaces
We give lower bounds of, or moreover determine, the height of K3 surfaces in characteristic $p$ admitting non-taut rational double point singularities or actions of local group schemes of order $p$
Coverings of the rational double points in characteristic p, Complex analysis and algebraic geometry
  • Iwanami Shoten, Tokyo,
  • 1977
Coverings of the rational double points in characteristic p, Complex analysis and algebraic geometry, Iwanami Shoten
  • 1977
Shafarevich, Inseparable morphisms of algebraic surfaces, Izv
  • Akad. Nauk SSSR Ser. Mat
  • 1976
...
1
2
...