Initial Boundary Value Problems for Hyperbolic Partial Differential Equations

@inproceedings{Kreiss2010InitialBV,
  title={Initial Boundary Value Problems for Hyperbolic Partial Differential Equations},
  author={Heinz-Otto Kreiss},
  year={2010}
}
1, Differential equations in one space dimension. The simplest hyperbolic differential equation is given by (1.1) du/dt = cdu/dx, where c is a constant, Its general solution is u(x, t) — F(x + ci), i.e., it is constant along the "characteristic lines" x + ct = const (see Figure 1). Therefore, if we u(l,t) = g(t) u(0,t)*g(t want to determine the solution of (1.1) in the region 0 ^ x ^ 1, t ja 0, we have to describe initial conditions (1.2) u(x,0)=f(x), for t = 0 and boundary conditions u(l,t… CONTINUE READING
8 Citations
13 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 13 references

A simple scheme for generating general curvilinear grids

  • A. A. Amsden, C. W. Hirt
  • J. Computational Physics II
  • 1973
1 Excerpt

Initial-boundary value problems for hyperbolic systems in regions with corners

  • S. Osher
  • I, Trans. Amer. Math. Soc,
  • 1973
1 Excerpt

An application of von Neumann algebras to finite difference equations, Ann. of Math

  • D. G. Schaeffer
  • MR
  • 1972
1 Excerpt

Lz is a continuable initial condition for Kreiss* mixed problems, Comm

  • J. Rauch
  • Pure Appi. Math
  • 1972
2 Excerpts

Initial - boundary value problems for hyperbolic systems in regions with corners , I

  • G. Scherer, S. Osher
  • Trans . Amer . Math . Soc
  • 1971

Initial boundary value problems for hyperbolic systems, Comm. Pure

  • H.-O, Kreiss
  • Appi. Math
  • 1970

Mixed problems for hyperbolic equations. I. Energy inequalities', II. Existence theorems with zero initial data and energy inequalities with initial data

  • R. Sakamoto
  • J. Math. Kyoto Univ,
  • 1970
2 Excerpts

Mixed problems in several variables

  • R. Hersh
  • J. Math. Mech
  • 1963
1 Excerpt

Problèmes mixtes pour les équations hyperboliques d'ordre supérieur, Les Équations aux Dérivées

  • S. Agmon
  • Partielles (Paris,
  • 1962
1 Excerpt

Similar Papers

Loading similar papers…