Inhibition of phosphoinositide metabolism or chelation of intracellular calcium blocks FSH-induced but not spontaneous meiotic resumption in mouse oocytes.


Mammalian oocytes are arrested at the diplotene phase of the first meiotic division until ovulation. In the mouse, germinal vesicle breakdown (GVBD) and progression to metaphase II is thought to be triggered by a positive signal originating in the follicular cells following stimulation by the luteinizing hormone (LH) surge. Isolated, fully grown oocytes can also undergo spontaneous reinitiation of meiosis in vitro in the absence of gonadotrophin stimulation. To investigate the mechanism of meiotic resumption, inhibitors of phosphoinositide metabolism and an intracellular calcium chelator were used during maturation in vitro under different conditions. In a series of experiments, isolated cumulus cell-oocyte complexes (COCs) maintained in meiotic arrest by hypoxanthine were induced to resume meiosis by treatment with follicle-stimulating hormone (FSH). Under these conditions, both LiCl and neomycin, which inhibit phosphoinositide hydrolysis, produced a dose-dependent inhibitory effect on meiotic resumption. Similar results were obtained when FSH-induced meiotic resumption was observed in the presence of the acetoxymethyl ester form of 1, 2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA/AM), an intracellular calcium chelator. In hypoxanthine-arrested oocytes, GVBD induced by epidermal growth factor (EGF), which mimics FSH action in in vitro maturation, was also repressed by LiCl and neomycin. Conversely, meiotic resumption triggered by a pulse of 8-bromo-cyclic adenosine monophosphate (8-Br cAMP) was not affected by these two inhibitors. In experiments in which oocytes were cultured under conditions which permit spontaneous meiotic maturation, resumption of meiosis was not affected by either inhibition of phosphoinositide hydrolysis or chelation of intracellular calcium. Therefore, it appears that meiotic resumption induced by hormone stimulation requires activation of the phosphoinositide pathway and mobilization of intracellular calcium. In contrast, spontaneous maturation probably occurs through a different mechanism because it is not affected by inhibition of this signaling pathway.


Citations per Year

79 Citations

Semantic Scholar estimates that this publication has 79 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Coticchio1998InhibitionOP, title={Inhibition of phosphoinositide metabolism or chelation of intracellular calcium blocks FSH-induced but not spontaneous meiotic resumption in mouse oocytes.}, author={Giovanni Coticchio and Sam Fleming}, journal={Developmental biology}, year={1998}, volume={203 1}, pages={201-9} }