Corpus ID: 211572672

Information Geometry of smooth densities on the Gaussian space: Poincar\'e inequalities.

@article{Pistone2020InformationGO,
  title={Information Geometry of smooth densities on the Gaussian space: Poincar\'e inequalities.},
  author={G. Pistone},
  journal={arXiv: Statistics Theory},
  year={2020}
}
  • G. Pistone
  • Published 2020
  • Mathematics
  • arXiv: Statistics Theory
We derive bounds for the Orlicz norm of the deviation of a random variable defined on $\mathbb{R}^n$ from its Gaussian mean value. The random variables are assumed to be smooth and the bound itself depends on the Orlicz norm of the gradient. Applications to non-parametric Information Geometry are discussed. 
1 Citations

References

SHOWING 1-10 OF 36 REFERENCES
Information Geometry of the Gaussian Space
  • 4
  • Highly Influential
  • PDF
Examples of the Application of Nonparametric Information Geometry to Statistical Physics
  • 19
  • PDF
Nonparametric Information Geometry
  • 39
  • PDF
Sobolev Statistical Manifolds and Exponential Models
  • 2
Lagrangian Function on the Finite State Space Statistical Bundle
  • 4
  • PDF
Information Geometry Formalism for the Spatially Homogeneous Boltzmann Equation
  • 21
  • Highly Influential
  • PDF
A Class of Non-Parametric Statistical Manifolds modelled on Sobolev Space
  • 5
  • PDF
Natural gradient via optimal transport
  • 38
  • PDF
Translations in the Exponential Orlicz Space with Gaussian Weight
  • 3
  • PDF
Exponential statistical manifold
  • 67
  • PDF
...
1
2
3
4
...