# Infinitesimal cohomology and the Chern character to negative cyclic homology

@article{Cortias2007InfinitesimalCA, title={Infinitesimal cohomology and the Chern character to negative cyclic homology}, author={G. Corti{\~n}as and Christian Haesemeyer and Charles A. Weibel}, journal={Mathematische Annalen}, year={2007}, volume={344}, pages={891-922} }

There is a Chern character from K-theory to negative cyclic homology. We show that it preserves the decomposition coming from Adams operations, at least in characteristic zero.

## 27 Citations

### Higher algebraic K-theory and tangent spaces to Chow groups

- Mathematics
- 2013

This is a reproduction of my thesis. By using higher K-theory(Chern character, cyclic homology, effacement theorem and etc), we provide an answer to a question by Green- Griffiths which says the…

### Relative Chern Characters for Nilpotent Ideals

- Mathematics
- 2009

When A is a unital ring, the absolute Chern character is a group homomorphism Ch* : K*(A) ? HN*(A), going from algebraic K-theory to negative cyclic homology. There is also a relative version,…

### PRO CDH-DESCENT FOR CYCLIC HOMOLOGY AND $K$-THEORY

- MathematicsJournal of the Institute of Mathematics of Jussieu
- 2014

In this paper, we prove that cyclic homology, topological cyclic homology, and algebraic $K$-theory satisfy a pro Mayer–Vietoris property with respect to abstract blow-up squares of varieties, in…

### Pro excision and h-descent for K-theory

- Mathematics
- 2012

In this paper it is proved that K-theory (and Hochschild and cyclic homology) satisfies pro versions of both excision for ideals (of commutative Noetherian rings) and descent in the h-topology in…

### Bloch-Ogus theorem,cyclic homology and deformation of Chow groups

- Mathematics
- 2022

. Using Bloch-Ogus theorem and Chern character from K-theory to cyclic homology, we answer a question of Green and Griﬃths on extending Bloch formula. Moreover, we construct a map from local Hilbert…

### The $K$-theory of toric varieties

- Mathematics
- 2007

Recent advances in computational techniques for K-theory allow us to describe the K-theory of toric varieties in terms of the K-theory of fields and simple cohomological data.

### Chern character, semi-regularity map and obstructions

- Mathematics
- 2021

Using Chern character, we construct a natural transformation from the local Hilbert functor to a functor of Artin rings defined from Hochschild homology, which enables us to reconstruct the…

### K-theory, local cohomology and tangent spaces to Hilbert schemes

- MathematicsAnnals of K-Theory
- 2018

By using K-theory, we construct a map from the tangent space to the Hilbert scheme at a point Y to the local cohomology group. And we use this map to answer affirmatively(after slight modification) a…

### The tangent complex of K-theory

- Mathematics
- 2019

We prove that the tangent complex of K-theory, in terms of (abelian) deformation problems over a characteristic 0 field k, is cyclic homology (over k). This equivalence is compatible with the…

### Infinitesimal Theory of Chow Groups via K-theory, Cyclic Homology and the Relative Chern Character

- Mathematics
- 2015

We examine the tangent groups at the identity, and more generally the formal completions at the identity, of the Chow groups of algebraic cycles on a nonsingular quasiprojective algebraic variety…

## References

SHOWING 1-10 OF 71 REFERENCES

### Homology and K-Theory of Commutative Algebras: Characterization of Complete Intersections

- Mathematics
- 1995

Abstract In this paper, we study Hochschild homology, cyclic homology and K-theory of commutative algebras of finite type over a characteristic zero field. We prove that local complete intersections…

### Relative Chern Characters for Nilpotent Ideals

- Mathematics
- 2009

When A is a unital ring, the absolute Chern character is a group homomorphism Ch* : K*(A) ? HN*(A), going from algebraic K-theory to negative cyclic homology. There is also a relative version,…

### Cyclic homology, cdh-cohomology and negative K-theory

- Mathematics
- 2005

We prove a blow-up formula for cyclic homology which we use to show that infinitesimal K-theory satisfies cdh-descent. Combining that result with some computations of the cdh-cohomology of the sheaf…

### Cohomology of Groups

- Mathematics
- 1982

This advanced textbook introduces students to cohomology theory. No knowledge of homological algebra is assumed beyond what is normally taught in a first course in algebraic topology.

### Homology of the special linear group and K-theory

- Mathematics
- 1996

On presente plusieurs resultats reliant l'homologie du groupe special lineaire et la K-theorie pour une certaine classe d'anneaux.

### Euclidean scissor congruence groups and mixed Tate motives over dual numbers

- Mathematics
- 2004

We define Euclidean scissor congruence groups for an arbitrary algebraically closed field F and propose their conjectural description. We suggest how they should be related to mixed Tate motives over…

### Volumes of hyperbolic manifolds and mixed Tate motives

- Mathematics
- 1996

Two different constructions of an invariant of an odd dimensional hyperbolic manifold in the K-group $K_{2n-1}(\bar \Bbb Q)\otimes \Bbb Q$ are given. The volume of the manifold is equal to the value…

### Excision in algebraic $K$-theory

- Mathematics
- 1992

Introduction 1. Excision and the homology of affine groups 2. Volodin's spaces 3. Excision for rings with the Triple Factorization Property 4. Lie analogue of Volodin's construction 5. The homology…