Infinite-dimensional triangularizable algebras

@article{Mesyan2018InfinitedimensionalTA,
  title={Infinite-dimensional triangularizable algebras},
  author={Zachary Mesyan},
  journal={Forum Mathematicum},
  year={2018},
  volume={31},
  pages={19 - 33}
}
  • Zachary Mesyan
  • Published 2018
  • Mathematics
  • Forum Mathematicum
  • Abstract Let End k ⁢ ( V ) {\mathrm{End}_{k}(V)} denote the ring of all linear transformations of an arbitrary k-vector space V over a field k. We define X ⊆ End k ⁢ ( V ) {X\subseteq\mathrm{End}_{k}(V)} to be triangularizable if V has a well-ordered basis such that X sends each vector in that basis to the subspace spanned by basis vectors no greater than it. We then show that an arbitrary subset of End k ⁢ ( V ) {\mathrm{End}_{k}(V)} is strictly triangularizable (defined in the obvious way) if… CONTINUE READING

    Paper Mentions

    BLOG POST

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 19 REFERENCES
    From Local to Global Triangularization
    19
    Über nilpotente Unterringe,Math
    • 1931
    Infinite-Dimensional Triangularization
    4
    Simultaneous Triangularization
    • 2000
    Turovskii, Volterra Semigroups Have Invariant Subspaces
    • 1999