Inductive Inference of Monogenic Pure Context-free Languages

  title={Inductive Inference of Monogenic Pure Context-free Languages},
  author={Noriyuki Tanida and T. Yokomori},
  • Noriyuki Tanida, T. Yokomori
  • Published in AII/ALT 1994
  • Mathematics, Computer Science
  • This paper concerns a subclass of context-free languages, called pure contextfree languages, which is generated by context-free grammar with only one type of symbol (i.e., terminals and nonterminals are not distinguished), and investigates the problem of identifying from positive data a restricted class of monogenic pure context-free languages (mono-PCF languages, in short). The class of mono-PCF languages is incomparable to the class of regular languages. We show that the class of mono-PCF… CONTINUE READING
    11 Citations
    Learning a Subclass of Context-Free Languages
    • 4
    • Highly Influenced
    Inferring pure context-free languages from positive data
    • 29
    Inferring a Rewriting System from Examples
    • 2
    Inferring Subclasses of Contextual Languages
    • 4
    • PDF
    Alfa, Omega. Acerca de Hoy te vi con mis ojos de Celia Romani
    • 3
    • Πτυχιακή Εργασία, Ανίχνευση Συμβάντων, και Δειγματοληψία, Αποθέματος σε, Ασύρματα Δίκτυα Αισθητήρων
    • 2005
    • 4
    • PDF


    Inductive Inference of Formal Languages from Positive Data
    • D. Angluin
    • Computer Science, Mathematics
    • Inf. Control.
    • 1980
    • 828
    String Adjunct Grammars: I. Local and Distributed Adjunction
    • 20
    String Adjunct Grammars
    • 31
    • PDF
    Pure grammars and pure languages
    • 23
    Language learning in dependence on the space of hypotheses
    • 87
    Inference of Reversible Languages
    • 526
    Language Identification in the Limit
    • 3,507
    Introduction to Automata Theory, Languages and Computation
    • 13,706
    • PDF
    Inductive inference from positive data is powerful
    • 58
    • PDF
    The Grammatical Inference Problem for the Szilard Languages of Linear Grammars
    • E. Mäkinen
    • Mathematics, Computer Science
    • Inf. Process. Lett.
    • 1990
    • 27