Induction of somatic mutations in Tradescantia clone 4430 by three phenylenediamine isomers and the antimutagenic mechanisms of diethyldithiocarbamate and ammonium meta-vanadate.

Abstract

Three isomers of the promutagen phenylenediamine at mM concentrations were plant-activated and induced mutation in stamen hairs of Tradescantia clone 4430. The rank order of the mutagenicity of the isomers was: o-phenylenediamine > m-phenylenediamine > p-phenylenediamine with corresponding mutagenic potencies of 5.60, 1.43, and 0.46 mutant stamen hair cells/mumole, respectively. Diethyldithiocarbamate (DEDTC) and ammonium meta-vanadate (vanadate) repressed the mutagenic activity of o-phenylenediamine (o-PDA) in intact plants. Based on inhibition kinetics and reaction rates, the mechanism of DEDTC antimutagenicity was attributed to the inhibition of peroxidases that are required in the plant activation of o-PDA to mutagenic product(s). Spectrophotometric measurements of equimolar concentrations of o-PDA and vanadate demonstrated that the antimutagenic property of vanadate was mainly due to its reactivity with o-PDA.

Cite this paper

@article{Gichner1994InductionOS, title={Induction of somatic mutations in Tradescantia clone 4430 by three phenylenediamine isomers and the antimutagenic mechanisms of diethyldithiocarbamate and ammonium meta-vanadate.}, author={Tom{\'a}{\vs} Gichner and G Cabrera Lopez and Elizabeth D Wagner and Michael J. Plewa}, journal={Mutation research}, year={1994}, volume={306 2}, pages={165-72} }