Corpus ID: 119665964

Induction and restriction of (\phi,\Gamma)-modules

@article{Shalit2018InductionAR,
  title={Induction and restriction of (\phi,\Gamma)-modules},
  author={Ehud de Shalit and Gal Porat},
  journal={arXiv: Number Theory},
  year={2018}
}
Let L be a non-archimedean local field of characteristic 0. We present a variant of the theory of (\phi,\Gamma)-modules associated with Lubin-Tate groups, developed by Kisin and Ren [Ki-Re], in which we replace the Lubin-Tate tower by the maximal abelian extension \Gamma = Gal(L^ab/L). This variation allows us to compute the functors of induction and restriction for (\phi,\Gamma)-modules, when the ground field L changes. We also give a self-contained account of the Cherbonnier-Colmez theorem on… 

References

SHOWING 1-6 OF 6 REFERENCES
IWASAWA THEORY AND F-ANALYTIC LUBIN-TATE ( φ , Γ )-MODULES by
— Let K be a finite extension of Qp. We use the theory of (φ, Γ)-modules in the Lubin-Tate setting to construct some corestriction-compatible families of classes in the cohomology of V , for certain
Galois representations and Lubin-Tate groups
Using Lubin-Tate groups, we develop a variant of Fontaine's theory of (ϕ,)-modules, and we use it to give a description of the Galois stable lattices inside certain crystalline representations. K of
Moduli of p-divisible groups
We prove several results about p-divisible groups and Rapoport-Zink spaces. Our main goal is to prove that Rapoport-Zink spaces at infinite level are naturally perfectoid spaces, and to give a
Représentations p-adiques surconvergentes
Ce travail s'inscrit dans le cadre de la classification des representations p-adiques du groupe de galois absolu d'un corps local par des modules (verifiant certaines proprietes, notamment l'action