# Index formulas and charge deficiencies on the Landau levels

@article{Goffeng2010IndexFA, title={Index formulas and charge deficiencies on the Landau levels}, author={Magnus Goffeng}, journal={Journal of Mathematical Physics}, year={2010}, volume={51}, pages={023509-023509} }

The notion of charge deficiency by Avron et al. [“Charge deficiency, charge transport and comparison of dimensions,” Commun. Math. Phys. 159, 399 (1994) ] is studied from the view of K-theory of operator algebras and is applied to the Landau levels in \R^{2n}. We calculate the charge deficiencies at the higher Landau levels in \R^{2n} by means of an Atiyah–Singer-type index theorem.

## 9 Citations

The geometry of (non-Abelian) Landau levels

- Physics, MathematicsJournal of Geometry and Physics
- 2020

Berezin–Toeplitz quantization associated with higher Landau levels of the Bochner Laplacian

- MathematicsJournal of Spectral Theory
- 2022

In this paper, we construct a family of Berezin-Toeplitz type quantizations of a compact symplectic manifold. For this, we choose a Riemannian metric on the manifold such that the associated Bochner…

Resonances and Spectral Shift Function Singularities for Magnetic Quantum Hamiltonians (Spectral and Scattering Theory and Related Topics)

- Mathematics
- 2012

In this survey article we consider the operator pair (H,H0) where H0 is the shifted 3D Schrodinger operator with constant magnetic field, H := H0 +V , and V is a short-range electric potential of a…

Spectral flow of exterior Landau-Robin hamiltonians

- Mathematics
- 2015

We study the spectral flow of Landau-Robin hamiltonians in the exterior of a compact domain with smooth boundary. This provides a method to study the spectrum of the exterior Landau-Robin…

The noncommutative Gohberg-Krein theorem

- Mathematics, Economics
- 2015

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Index pairings for Rn-actions and Rieffel deformations

- MathematicsKyoto Journal of Mathematics
- 2019

With an action $\alpha$ of $\mathbb{R}^n$ on a $C^*$-algebra $A$ and a skew-symmetric $n\times n$ matrix $\Theta$ one can consider the Rieffel deformation $A_\Theta$ of $A$, which is a $C^*$-algebra…

Gaplessness of Landau Hamiltonians on Hyperbolic Half-planes via Coarse Geometry

- Mathematics, PhysicsCommunications in Mathematical Physics
- 2021

We use coarse index methods to prove that the Landau Hamiltonian on the hyperbolic half-plane, and even on much more general imperfect half-spaces, has no spectral gaps. Thus the edge states of…

The Noncommutative Geometry of the Landau Hamiltonian: Metric Aspects

- Mathematics
- 2020

This work provides a first step towards the construction of a noncommutative geometry for the Quantum Hall Effect in the continuous. Taking inspiration from the ideas developed by Bellissard during…

Polyanalytic Toeplitz Operators: Isomorphisms, Symbolic Calculus and Approximation of Weyl Operators

- MathematicsJournal of Fourier Analysis and Applications
- 2019

We discuss an extension of Toeplitz quantization based on polyanalytic functions. We derive isomorphism theorem for polyanalytic Toeplitz operators between weighted Sobolev-Fock spaces of…

## References

SHOWING 1-10 OF 20 REFERENCES

Charge deficiency, charge transport and comparison of dimensions

- Physics, Mathematics
- 1994

We study the relative index of two orthogonal infinite dimensional projections which, in the finite dimensional case, is the difference in their dimensions. We relate the relative index to the…

Toeplitz operators on the Segal-Bargmann space

- Mathematics
- 1987

In this paper, we give a complete characterization of those functions on 2n-dimensional Euclidean space for which the Berezin-Toeplitz quantizations admit a symbol calculus modulo the compact…

D-Branes, RR-Fields and Duality on Noncommutative Manifolds

- Mathematics
- 2008

We develop some of the ingredients needed for string theory on noncommutative spacetimes, proposing an axiomatic formulation of T-duality as well as establishing a very general formula for D-brane…

On the Spectral Properties of the Perturbed Landau Hamiltonian

- Physics
- 2006

The Landau Hamiltonian governing the behavior of a quantum particle in dimension 2 in a constant magnetic field is perturbed by a compactly supported magnetic field and a similar electric field. We…

Geometric K-Homology of Flat D-Branes

- Mathematics
- 2006

We use the Baum-Douglas construction of K-homology to explicitly describe various aspects of D-branes in Type II superstring theory in the absence of background supergravity form fields. We…

The Classification of Extensions of C *-algebras

- Mathematics
- 1981

where K = K(H) denotes the compact operators on a separable infinite-dimensional Hubert space H. The addition operation comes from associating to (1.1) its "Busby invariant" [4, Theorem 4.3] A —•…

Harmonic analysis in phase space

- Mathematics, Physics
- 1989

This book provides the first coherent account of the area of analysis that involves the Heisenberg group, quantization, the Weyl calculus, the metaplectic representation, wave packets, and related…

A NOTE ON TOEPLITZ OPERATORS

- Mathematics
- 1996

We study Toeplitz operators on Bergman spaces using techniques from the analysis of Dirac-type operators on complete Riemannian manifolds, and prove an index theorem of Boutet de Monvel from this…

On the index of Toeplitz operators of several complex variables

- Mathematics
- 1978

Toeplitz operators on strictly pseudo-convex boundaries of complex domains are defined; they behave like pseudo-differential operators. An extension of the Atiyah-Singer formula is proved for…

Spectral shift function in strong magnetic fields

- Mathematics
- 2004

The three-dimensional Schrodinger operator H with constant magnetic field of strength b> 0 is considered under the assumption that the electric potential V ∈ L 1 (R 3 ) admits certain power-like…