Independence of the Total Reflexivity Conditions for Modules

@article{Jorgensen2004IndependenceOT,
  title={Independence of the Total Reflexivity Conditions for Modules},
  author={David A. Jorgensen and Liana M. Şega},
  journal={Algebras and Representation Theory},
  year={2004},
  volume={9},
  pages={217-226}
}
Abstract We show that the conditions defining total reflexivity for modules are independent. In particular, we construct a commutative Noetherian local ring R and a reflexive R-module M such that ExtRi(M,R)=0 for all i>0, but ExtRi(M*,R)≠0 for all i>0.  

Citations

Publications citing this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 12 REFERENCES

A functorial approach to modules of G-dimension zero

VIEW 3 EXCERPTS
HIGHLY INFLUENTIAL

Şega, Nonvanishing cohomology and classes of Gorenstein rings

  • L.M.D.A. Jorgensen
  • Adv. Math
  • 2004
VIEW 1 EXCERPT

Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension

  • A. L. Avramov
  • Proc. London Math. Soc
  • 2002
VIEW 1 EXCERPT

Buchweitz, Support varieties and cohomology over complete intersections

  • L. L. Avramov, R.-O
  • Invent. Math
  • 2000
VIEW 1 EXCERPT

Koszul algebras, Advances in commutative ring theory (Fez

  • R. Fröberg
  • Lecture Notes in Pure and Appl. Math
  • 1997