Incremental genetic K-means algorithm and its application in gene expression data analysis


In recent years, clustering algorithms have been effectively applied in molecular biology for gene expression data analysis. With the help of clustering algorithms such as K-means, hierarchical clustering, SOM, etc, genes are partitioned into groups based on the similarity between their expression profiles. In this way, functionally related genes are identified. As the amount of laboratory data in molecular biology grows exponentially each year due to advanced technologies such as Microarray, new efficient and effective methods for clustering must be developed to process this growing amount of biological data. In this paper, we propose a new clustering algorithm, Incremental Genetic K-means Algorithm (IGKA). IGKA is an extension to our previously proposed clustering algorithm, the Fast Genetic K-means Algorithm (FGKA). IGKA outperforms FGKA when the mutation probability is small. The main idea of IGKA is to calculate the objective value Total Within-Cluster Variation (TWCV) and to cluster centroids incrementally whenever the mutation probability is small. IGKA inherits the salient feature of FGKA of always converging to the global optimum. C program is freely available at . Our experiments indicate that, while the IGKA algorithm has a convergence pattern similar to FGKA, it has a better time performance when the mutation probability decreases to some point. Finally, we used IGKA to cluster a yeast dataset and found that it increased the enrichment of genes of similar function within the cluster.

DOI: 10.1186/1471-2105-5-172

Extracted Key Phrases

2 Figures and Tables

Citations per Year

140 Citations

Semantic Scholar estimates that this publication has 140 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Lu2004IncrementalGK, title={Incremental genetic K-means algorithm and its application in gene expression data analysis}, author={Yi Lu and Shiyong Lu and Farshad Fotouhi and Youping Deng and Susan J. Brown}, journal={BMC Bioinformatics}, year={2004}, volume={5}, pages={172 - 172} }