# Improving the Density of Jammed Disordered Packings Using Ellipsoids

@article{Donev2004ImprovingTD, title={Improving the Density of Jammed Disordered Packings Using Ellipsoids}, author={Aleksandar Donev and Ibrahima Ciss{\'e} and D Sachs and Evan A. Variano and Frank H. Stillinger and Robert Connelly and Salvatore Torquato and Paul M. Chaikin}, journal={Science}, year={2004}, volume={303}, pages={990 - 993} }

Packing problems, such as how densely objects can fill a volume, are among the most ancient and persistent problems in mathematics and science. For equal spheres, it has only recently been proved that the face-centered cubic lattice has the highest possible packing fraction \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \({\varphi}={\pi}{/}\sqrt{18}{\approx}0.74\) \end{document}. It is… Expand

#### Topics from this paper

#### Paper Mentions

#### 917 Citations

Densest versus jammed packings of bent-core trimers.

- Physics, Medicine
- Physical review. E
- 2019

All systems have ϕ_{J} significantly below the monomeric value, indicating that trimers' quenched bond-length and bond-angle constraints always act to promote jamming. Expand

Hard convex lens-shaped particles: Characterization of dense disordered packings.

- Physics, Medicine
- Physical review. E
- 2019

The MRJ state of such optimal lenses is denser (less porous), more disordered, and rattler-free, and this set of characteristics makes them good glass formers. Expand

Densest vs. jammed packings of 2D bent-core trimers

- Materials Science, Physics
- 2018

We identify the maximally dense lattice packings of tangent-disk trimers with fixed bond angles ($\theta = \theta_0$) and contrast them to both their nonmaximally-dense-but-strictly-jammed lattice… Expand

Distinctive features arising in maximally random jammed packings of superballs.

- Mathematics, Physics
- Physical review. E, Statistical, nonlinear, and soft matter physics
- 2010

It is found that the MRJ densities of such packings increase dramatically and nonanalytically as one moves away from the circular-disk and sphere point (p=1), and it is shown that such seemingly "special" packing configurations are counterintuitively not rare. Expand

Jammed hard-particle packings: From Kepler to Bernal and beyond

- Physics
- 2010

This review describes the diversity of jammed configurations attainable by frictionless convex nonoverlapping (hard) particles in Euclidean spaces and for that purpose it stresses individual-packing… Expand

Enumerating Rigid Sphere Packings

- Physics, Mathematics
- SIAM Rev.
- 2016

The lists are nearly complete, except for a small number of highly singular clusters (linearly floppy but nonlinearly rigid) and the data contains some major geometric... Expand

Experiments on random packings of ellipsoids.

- Materials Science, Medicine
- Physical review letters
- 2005

A novel way of determining packing density for a finite sample that minimizes surface effects is introduced and fabricated ellipsoids are fabricated and it is shown that, in a sphere, the radial packing fraction phi(r) can be obtained from V(h), the volume of added fluid to fill the sphere to height h. Expand

Percolation of disordered jammed sphere packings

- Physics, Mathematics
- 2016

We determine the site and bond percolation thresholds for a system of disordered jammed sphere packings in the maximally random jammed state, generated by the Torquato-Jiao algorithm. For the site… Expand

Optimal packings of superballs.

- Mathematics, Physics
- Physical review. E, Statistical, nonlinear, and soft matter physics
- 2009

This paper provides analytical constructions for the densest known superball packings for all convex and concave cases and identifies certain families of Bravais lattice packings possessing the global symmetries that are consistent with certain asymmetries of a superball. Expand

Dense crystalline packings of ellipsoids.

- Materials Science, Medicine
- Physical review. E
- 2017

The discovery of the SQ-TR crystal suggests organizing principles for nonspherical particles and self-assembly of colloidal systems, and a phase diagram for self-dual ellipsoids is reported. Expand

#### References

SHOWING 1-10 OF 73 REFERENCES

Diversity of order and densities in jammed hard-particle packings.

- Mathematics, Medicine
- Physical review. E, Statistical, nonlinear, and soft matter physics
- 2002

This investigation shows that, even in the large-system limit, jammed systems of hard spheres can be generated with a wide range of packing fractions from phi approximately 0.52 to the fcc limit, indicating that the density alone does not uniquely characterize a packing. Expand

Geometric properties of random disk packings

- Mathematics
- 1990

Random packings ofN⩽2000 rigid disks in the plane, subject to periodic boundary conditions on a square primitive cell, have been generated by a concurrent construction which treats all disks on an… Expand

Multiplicity of Generation, Selection, and Classification Procedures for Jammed Hard-Particle Packings †

- Computer Science, Physics
- 2001

It is shown that there is a multiplicity of generation, selection, and classification procedures for jammed configurations of identical d-dimensional spheres, and the concept of rigidity percolation can be generalized to network glasses. Expand

Disks vs. spheres: Contrasting properties of random packings

- Materials Science
- 1991

Collections of random packings of rigid disks and spheres have been generated by computer using a previously described concurrent algorithm. Particles begin as infinitesimal moving points, grow in… Expand

The pursuit of perfect packing

- Computer Science
- 2000

Prefaces How Many Sweets in the Jar? Loose Change and Tight Packing A Teasing but Tractable Problem A Handful of Coins Order and Disorder Hard Problems with Hard Spheres The Greengrocer's Dilemma… Expand

Is random close packing of spheres well defined?

- Physics, Medicine
- Physical review letters
- 2000

It is argued that the current picture of RCP cannot be made mathematically precise and support this conclusion via a molecular dynamics study of hard spheres using the Lubachevsky-Stillinger compression algorithm. Expand

Random packings of spheres and spherocylinders simulated by mechanical contraction.

- Materials Science, Medicine
- Physical review. E, Statistical, nonlinear, and soft matter physics
- 2003

A simulation technique for creating dense random packings of hard particles is introduced, particularly suited to handle particles of different shapes, and Comparisons between the equilibrium phase diagram for hard spherocylinders and the densest possible amorphous packings have interesting implications on the crystallization of sphero cylinders as a function of aspect ratio. Expand

Molecular dynamics study of the dynamical properties of an assembly of infinitely thin hard rods

- Physics
- 1983

We present molecular dynamics (MD) simulations of a system of N (N=100–500) infinitely thin hard rods of length L (‘hard needles’). An algorithm is described which is reasonably fast and yet is… Expand

Orientational order in random packings of ellipses

- Physics
- 1992

By means of Monte Carlo simulations, we examine the behavior of random packings of hard ellipses formed by pouring into a two-dimensional container. The particles pack so that their semimajor axes… Expand

Testing the thermodynamic approach to granular matter with a numerical model of a decisive experiment

- Physics, Medicine
- Nature
- 2002

Considering particles of different sizes in a slowly sheared dense granular system, an effective temperature is extracted from a relation connecting their diffusivity and mobility, and an explicit computation is performed to show that the effective temperature measured from this relation coincides with the Edwards configurational temperature. Expand