Improving classification performance of public complaints with TF-IGM weighting: Case study : Media center E-wadul surabaya

@article{Mahfud2017ImprovingCP,
  title={Improving classification performance of public complaints with TF-IGM weighting: Case study : Media center E-wadul surabaya},
  author={Fakhris Khusnu Reza Mahfud and Aris Tjahyanto},
  journal={2017 International Conference on Sustainable Information Engineering and Technology (SIET)},
  year={2017},
  pages={220-225}
}
Currently Media Center e-Wadul still uses manual labeling in the process of complaint submission. As a result, Media Center administration takes a long time in coordinating with regional work unit (SKPD) to respond to complaints registered. Therefore, it is necessary to classify complaints based on SKPD to speed up the timing of complaint submission. The challenge of classification using text data is to have a high dimension due to a large number of features. In addition, features that appear… CONTINUE READING

Similar Papers

References

Publications referenced by this paper.
SHOWING 1-10 OF 16 REFERENCES

Analisis Aspirasi Dan Pengaduan Di Situs Lapor! Dengan Menggunakan Text Mining

C. Megawati
  • 2015.
  • 2015
VIEW 8 EXCERPTS
HIGHLY INFLUENTIAL

A review on feature selection and feature extraction for text classification

  • 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)
  • 2016
VIEW 3 EXCERPTS
HIGHLY INFLUENTIAL

2016, Pengguna Internet di Indonesia Capai 132 Juta

K. C. Media
  • KOMPAS.com, 2016. [Online]. Available: http://tekno.kompas.com/read/2016/10/24/15064727/2016.pengguna.inte rnet.di.indonesia.capai.132.juta. [Accessed: 06-Mar-2017].
  • 2016

Arifiyanti, “Ekstraksi Fitur Pada Konten Jejaring Sosial Twitter Berbahasa Indonesia Dalam Peningkatan Kinerja Klasifikasi.

A A.
  • 2015
VIEW 3 EXCERPTS