Improved upper bounds for partial spreads

@article{Kurz2017ImprovedUB,
  title={Improved upper bounds for partial spreads},
  author={S. Kurz},
  journal={Designs, Codes and Cryptography},
  year={2017},
  volume={85},
  pages={97-106}
}
  • S. Kurz
  • Published 2017
  • Mathematics, Computer Science
  • Designs, Codes and Cryptography
  • A partial $$(k-1)$$(k-1)-spread in $${\text {PG}}(n-1,q)$$PG(n-1,q) is a collection of $$(k-1)$$(k-1)-dimensional subspaces with trivial intersection. So far, the maximum size of a partial $$(k-1)$$(k-1)-spread in $${\text {PG}}(n-1,q)$$PG(n-1,q) was known for the cases $$n\equiv 0\pmod k$$n≡0(modk), $$n\equiv 1\pmod k$$n≡1(modk), and $$n\equiv 2\pmod k$$n≡2(modk) with the additional requirements $$q=2$$q=2 and $$k=3$$k=3. We completely resolve the case $$n\equiv 2\pmod k$$n≡2(modk) for the… CONTINUE READING
    29 Citations

    Topics from this paper

    The maximum size of a partial spread in a finite projective space
    • 33
    • PDF
    A new upper bound for subspace codes
    • 6
    • PDF
    Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6
    • 16
    • PDF
    Generalized vector space partitions
    • 6
    • PDF
    On projective $q^r$-divisible codes
    • 1
    • Highly Influenced
    • PDF
    The maximum size of a partial spread II: Upper bounds
    • 11
    • Highly Influenced
    • PDF
    Upper bounds for partial spreads
    • 6
    • Highly Influenced
    • PDF
    Coset Construction for Subspace Codes
    • 23
    • PDF
    Tables of subspace codes
    • 59
    • PDF

    References

    SHOWING 1-10 OF 22 REFERENCES
    The maximum size of a partial spread in a finite projective space
    • 33
    • PDF
    The supertail of a subspace partition
    • 7
    • PDF
    Upper bounds for partial spreads
    • 6
    • PDF
    Tables of subspace codes
    • 59
    • PDF
    The maximum size of a partial 3-spread in a finite vector space over GF(2)
    • 42
    • Highly Influential
    Partial spreads in finite projective spaces and partial designs
    • 108
    On the length of the tail of a vector space partition
    • Olof Heden
    • Computer Science, Mathematics
    • Discret. Math.
    • 2009
    • 24
    Partial t-spreads and group constructible (s,r,μ)-nets
    • 46
    Problems on q-Analogs in Coding Theory
    • T. Etzion
    • Computer Science, Mathematics
    • ArXiv
    • 2013
    • 24
    • PDF
    Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams
    • 170
    • Highly Influential
    • PDF