Improved Production of 2,3-Butanediol in Bacillus amyloliquefaciens by Over-Expression of Glyceraldehyde-3-Phosphate Dehydrogenase and 2,3-butanediol Dehydrogenase

Abstract

BACKGROUND Previously, a safe strain, Bacillus amyloliquefaciens B10-127 was identified as an excellent candidate for industrial-scale microbial fermentation of 2,3-butanediol (2,3-BD). However, B. amyloliquefaciens fermentation yields large quantities of acetoin, lactate and succinate as by-products, and the 2,3-BD yield remains prohibitively low for commercial production. METHODOLOGY/PRINCIPAL FINDINGS In the 2,3-butanediol metabolic pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of 3-phosphate glyceraldehyde to 1,3-bisphosphoglycerate, with concomitant reduction of NAD(+) to NADH. In the same pathway, 2,3-BD dehydrogenase (BDH) catalyzes the conversion of acetoin to 2,3-BD with concomitant oxidation of NADH to NAD(+). In this study, to improve 2,3-BD production, we first over-produced NAD(+)-dependent GAPDH and NADH-dependent BDH in B. amyloliquefaciens. Excess GAPDH reduced the fermentation time, increased the 2,3-BD yield by 12.7%, and decreased the acetoin titer by 44.3%. However, the process also enhanced lactate and succinate production. Excess BDH increased the 2,3-BD yield by 16.6% while decreasing acetoin, lactate and succinate production, but prolonged the fermentation time. When BDH and GAPDH were co-overproduced in B. amyloliquefaciens, the fermentation time was reduced. Furthermore, in the NADH-dependent pathways, the molar yield of 2,3-BD was increased by 22.7%, while those of acetoin, lactate and succinate were reduced by 80.8%, 33.3% and 39.5%, relative to the parent strain. In fed-batch fermentations, the 2,3-BD concentration was maximized at 132.9 g/l after 45 h, with a productivity of 2.95 g/l·h. CONCLUSIONS/SIGNIFICANCE Co-overexpression of bdh and gapA genes proved an effective method for enhancing 2,3-BD production and inhibiting the accumulation of unwanted by-products (acetoin, lactate and succinate). To our knowledge, we have attained the highest 2,3-BD fermentation yield thus far reported for safe microorganisms.

DOI: 10.1371/journal.pone.0076149

Extracted Key Phrases

7 Figures and Tables

01002003002014201520162017
Citations per Year

264 Citations

Semantic Scholar estimates that this publication has 264 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@inproceedings{Yang2013ImprovedPO, title={Improved Production of 2,3-Butanediol in Bacillus amyloliquefaciens by Over-Expression of Glyceraldehyde-3-Phosphate Dehydrogenase and 2,3-butanediol Dehydrogenase}, author={Taowei Yang and Zhiming Rao and Xian Zhang and Meijuan Xu and Zhenghong Xu and Shang-Tian Yang}, booktitle={PloS one}, year={2013} }