Implementing 2-descent for Jacobians of hyperelliptic curves

  title={Implementing 2-descent for Jacobians of hyperelliptic curves},
  author={Michael Stoll},
This paper gives a fairly detailed description of an algorithm that computes (the size of) the 2-Selmer group of the Jacobian of a hyperellitptic curve over Q. The curve is assumed to have even genus or to possess a Q-rational Weierstraa point. 

From This Paper

Topics from this paper.


Publications citing this paper.

204 Citations

Citations per Year
Semantic Scholar estimates that this publication has 204 citations based on the available data.

See our FAQ for additional information.


Publications referenced by this paper.

Néron Models

  • S. Bosch, W. Lütkebohmert, M. Raynaud
  • Ergeb. Math. Grenzgeb. (3) 21, Springer
  • 1990
Highly Influential
7 Excerpts

The Mordell–Weil group of curves of genus 2

  • J.W.S. Cassels
  • in: Arithmetic and Geometry, M. Artin and J. Tate…
  • 1983
Highly Influential
6 Excerpts

Nombre des extensions d’un degré donné d’un corps p-adique

  • M. Krasner
  • in: Les tendances géométriques en algèbre et th…
  • 1966
Highly Influential
3 Excerpts

Algorithms for Modular Elliptic Curves

  • J. Cremona
  • 2nd ed., Cambridge Univ. Press, Cambridge
  • 1997
2 Excerpts

Cycles of quadratic polynomials and rational points on a genus-two curve

  • E. V. Flynn, B. Poonen, E. F. Schaefer
  • Duke Math. J. 90
  • 1997
1 Excerpt

Local Fields

  • J.-P. Serre
  • 2nd ed., Springer, New York
  • 1995

Algebraische Zahlentheorie

  • J. Neukirch
  • Springer
  • 1992

Similar Papers

Loading similar papers…