Implementation of self-organizing neural networks for visuo-motor control of an industrial robot

@article{Walter1993ImplementationOS,
  title={Implementation of self-organizing neural networks for visuo-motor control of an industrial robot},
  author={J{\"o}rg A. Walter and Klaus Schulten},
  journal={IEEE transactions on neural networks},
  year={1993},
  volume={4 1},
  pages={86-96}
}
The implementation of two neural network algorithms for visuo-motor control of an industrial robot (Puma 562) is reported. The first algorithm uses a vector quantization technique, the ;neural-gas' network, together with an error correction scheme based on a Widrow-Hoff-type learning rule. The second algorithm employs an extended self-organizing feature map algorithm. Based on visual information provided by two cameras, the robot learns to position its end effector without an external teacher… CONTINUE READING

Citations

Publications citing this paper.
Showing 1-10 of 106 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 20 references

A \neural gas" network learns topologies

  • T. Martinetz, K. Schulten
  • Kohonen et al, editor, Proc. Int. Conf. Arti cial…
  • 1991
Highly Influential
15 Excerpts

A neural network with Hebbian-like adaptiation rules learning visuomotor coordination of a robot arm

  • T. Martinetz, J. Walter, K. Schulten
  • 1991

Industrial robot learns visuo-moto coordination by means of \neural-gas" network

  • J. Walter, T. Martinetz, K. Schulten
  • In Kohonen et al, editor, Proc. Int. Conf. Arti…
  • 1991
2 Excerpts

Laakson. Variants of self-organizing maps

  • J. A. Kangas, T. Kohonen, J.T
  • IEEE Trans. Neural Networks.,
  • 1990
1 Excerpt

Learning of visuomotor coordination of a robot arm with redundant degrees of freedom

  • T. Martinetz, H. Ritter, K. Schulten
  • In Proc. ICNC-90,
  • 1990
3 Excerpts

Non-linear prediction with self-organizing maps

  • J. Walter, H. Ritter, K. Schulten
  • In International Joint Conference On Neural…
  • 1990

Similar Papers

Loading similar papers…