Impact of glucose ingestion on hepatic and peripheral glucose metabolism in man: an analysis based on simultaneous use of the forearm and double isotope techniques.

Abstract

The metabolic response to glucose ingestion was studied in 10 normal men (aged 21-23 yr) by the simultaneous application of the forearm and double isotope techniques. The latter consisted of a primed constant infusion of [3-3H]glucose, followed by the administration of an oral glucose load (mean +/- SE, 90.7 +/- 0.7 g) containing [1-14C]glucose. Most (80.6 +/- 8.1%) of the ingested glucose appeared systemically within 270 min, suggesting that initial splanchnic glucose extraction accounted for 19.4 +/- 3.1% (17.7 +/- 2.8 g) of the oral load. Basal hepatic glucose output (2.22 +/- 0.12 mg/kg X min) was reduced (P less than 0.005) within 30 min after glucose loading and remained suppressed throughout the study; its mean reduction from 0-270 min was 54.9 +/- 9.9%, thereby accounting for the conservation of 26.5 +/- 4.9 g glucose. Suprabasal glucose appearance from 0-270 min was 46.6 +/- 4.3 g. Forearm glucose uptake rose 8.5-fold to 0.664 +/- 0.083 mg/100 ml forearm X min at 45 min, but basal forearm oxygen uptake (6.1 +/- 0.4 mumol/100 ml forearm X min) did not change. The increment in glucose disappearance from 0-270 min was 46.4 +/- 3.8 g, of which increased glucose uptake by muscle, determined from the forearm glucose uptake data, accounted for 37.7 +/- 5.1 g (81%). If uptake of the remaining 8.7 g was shared equally by the liver and peripheral tissues, the splanchnic bed and periphery would account, respectively, for 47.1 g (52%) and 43.5 g (48%) of the ingested load. We conclude that splanchnic and peripheral tissues contribute almost equally to the total homeostatic response; in kinetic terms, decreased hepatic glucose output and increased glucose uptake (splanchnic plus peripheral) constitute 29% and 71% of the total response, respectively; restoration of basal glucose kinetics after glucose ingestion requires more than 270 min; and increased peripheral oxygen uptake is not the mechanism of glucose-induced thermogenesis which, instead, may reflect increased splanchnic oxygen consumption.

0100200'92'95'98'01'04'07'10'13'16
Citations per Year

870 Citations

Semantic Scholar estimates that this publication has 870 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Jackson1986ImpactOG, title={Impact of glucose ingestion on hepatic and peripheral glucose metabolism in man: an analysis based on simultaneous use of the forearm and double isotope techniques.}, author={Ross A. Jackson and Reshma Roshania and Mohammed Iqbal Hawa and Bryan Sim and L Disilvio}, journal={The Journal of clinical endocrinology and metabolism}, year={1986}, volume={63 3}, pages={541-9} }